MAT347 /644, Fall 2023 Renato Ghini Bettiol
Lecture 23

1. NONNEGATIVE V. SUMS OF SQUARES
We say that a polynomial p € R[z]|s4 in n variables z1,...,z, of degree < 2d is

i) nonnegative if p(xq,...,z,) > 0 for all x € R™;

ii) a sum of squares (sos) if there exist polynomials ¢; € Rlz]4 such that p(z) = f:l gj(z)?.
Clearly, every sos polynomial is nonnegative. Positive multiples and convex combjinations of non-
negative polynomials (respectively, sos polynomials) are again nonnegative (respectively, sos), thus

P od = {p € Rlz]aq : pis nonnegative}
Ypod 1= {p € Rlx]oq : pis sos}
are convex cones in the vector space R[z]og = RY, where N = (”;d).

Exercise 1. Prove that P, o4 is a closed semialgebraic set. Find an explicit description of P2 as
a semialgebraic set.

Solution to Exercise 1. This is a consequence of Quantifier Elimination, by eliminating the
quantifier Vo in Vz, p(z) > 0. For example, for univariate quadratic polynomials, we have that

Pro = {p(x) = az® + bz + ¢ : Va, p(x) > 0}
= {p(x) :axQ—l—b:E—{—c:miI]Ef{lp(m) >0}

S
= {p(z) =az® +br+c:a>0and p(—b/2a), or a =b =0 and p(0) > 0}
={az® +br +c:a>0and b*> —4ac <0, ora =b=0and ¢ > 0}
:{ax2+bx+c:a20, c>0, 4ac—b220}.

Note that P 2 is actually basic semialgebraic, and it is also a spectrahedron:

Py = {am2 +br+c:Va, (i)T <b52 bé2> (;) > o}

:{ax2+bx+c: <b;2 bf) 50}

As it turns out, P, 24 is semialgebraic but it is not basic semialgebraic if 2d > 4EI In particular,
P, 54 is not a spectrahedron if 2d > 4.

Since X, 2¢ C Py 24, a natural question is whether the converse inclusion X, 2y D P, 24 holds,
i.e., if nonnegative polynomials are sos. Remarkably, this is almost never the case:

Theorem 1 (Hilbert, 1888). The only cases in which ¥, 24 = Py, 24 are:

a) Univariate polynomials, i.e., n = 1;
b) Quadratic polynomials, i.e., 2d = 2;
¢) Bivariate quartics, i.e., n =2, 2d = 4.

An example of p € Py g\ Yo is the Motzkin polynomial p(x,y) = z%y? + 22y* — 322y + 1.

Exercise 2. Use the arithmetic-geometric inequality applied to {z*y?, 2%y* 1} to show that the
Motzkin polynomial is nonnegative. Think how you could try to show it is not sos.

IFor a more details, see p. 52 in [BPT13].



Solution to Exercise 2. By the arithmetic-geometric inequality, we have that
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that is, p(z,y) > 0. If p(z,y) was sos, then one can show it would be a sum of terms of the form
(ax?y + bry? + cxy + d)? but no such term has a negative coefficient for z2y?.

> {/(z4y?) (22y4) = 2%y,

Exercise 3. Use the computations in Exercise [1| to show that ;2 = P; 2. Think about how this
could be generalized prove the equality in Theorem (1| b).

Solution to Exercise 3. Let us use the spectrahedral description

_J 2 . _ (¢ b2
P o= {ax +bx+c: Ma,b,c) = (b/2 u > - 0}.
Since M (a,b,c) = 0, there exists a matrix P such that M (a,b,c) = PTP. Using, e.g., the Cholesky
decomposition, we find that, with a > 0, ¢ > 0, 4ac — b*> > 0, assuming for simplicity ¢ > OE|

_b_
0 4ac—b2 | °
NG

Thus, setting v = <i>, we have

az’® 4+ bx + ¢ = v’ M(a,b,c)v = v (PTP)v = (Pv)T (Pv).

Since Pv = (Qb—\% +/c, mivgi‘[cc_lﬂ), the above yields the following sos decomposition:

2
bx 2 x V4ac — b2
24 = [ = oy 7
ax® +bx +c 2XEJM/E + NG

Therefore, P12 C X1 2 and hence P o = ¥ 2.

One can prove the equality in Theorem b) using a similar reasoning, identifying quadratic poly-
nomials in P, » with (n+1)x (n+1) positive-semidefinite matrices operating on v = (1, z1, 2, ..., 2y).
In particular, ¥, 2 = P, 2 is a spectrahedron.

More generally, for general d, it can be shown that ¥,, o4 is a spectrahedral shadowﬂ of dimension

(”;r?l), see [BPT13, Cor 3.40]. In particular, SDP can be used to test if p € ¥, 94 and find

polynomials ¢; € R[z]q such that p =) j qu. Let us illustrate this with an example of p € 31 4.

Exercise 4. ([BPT13, Ex. 3.35]) Use the following steps to find an sos decomposition for the
nonnegative polynomial p(z) = z* + 423 + 622 + 4z + 5.

i) Let v = (1,z,2?) be the vector consisting of monomials of degree < 2 and M € Sym?(R?) be
a symmetric matrix. Determine affine-linear constraints on M equivalent to p(z) = v’ Mv, by
matching coefficients.

ii) Use SDP to find M * 0 satisfying the above constraints.

iii) Find P such that M = PT P and show that Pv yields the desired sos decomposition.

Solution to Exercise 4. Using basic calculus, we see that p(x) > 4 for all x € R, thus we have
that p € P14 = Y14, hence an sos decomposition exists.

2How would you handle the case ¢ = 07 What are the possible values of a, b?
3But 3n,24 is not a spectrahedron, unless 2d = 2.
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i)

i)

iii)

agp apl a2
Writing M = | ap1 @11 ai2 |, we have that
ap2 a1z a2

’UTMU = agg + 2ap1 + .7}2(2CL02 + (111) + 2a12w3 + a22x4.
So, matching coefficients with p(z) = 2* + 423 4 622 + 42 + 5 we find the linear constraints
ago =5, ap1 = 2, ap2 =3 —a11/2, a2 =2, axp =1,

and aiq is free.
Substituting these affine-linear constraints in M, we have

5 2 3-o
M= 2 an 2

ST 1

By Sylvester’s criterion, it is easy to see that the above is positive-semidefinite if and only if
4 S ajl S 8.

Take, e.g., a;1 = 6, so that M = > 0, and use the Cholesky decomposition to find

O N Ot
N SN
= N O

P such that M = PTP. Namely, we have
V5

F 0
00 /g
hence p(z) = v Mv = v (PTP)v = (Pv)T Pv yields the sos decomposition

p(z) = (Pv)T Py = <\2/xg - \/5>2 - (@aﬁ + \/?3:)2 + (@aﬁ) 2.

As usual, this decomposition is not unique. For instance, the matrix

0 2 1
Q=|(v2 v2 0
V3 0 0

also satisfies M = QT'Q and hence yields the sos decomposition
p(x) = (Qu)'Qu = (a® +22)* + (V2 + V2x)" + (V3)".

Can you find an sos decomposition with only 2 squares?ﬁ
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AFor nonnegative univariate polynomials, it is always possible to find an sos decomposition with only 2 squares!
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