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Lecture 23

1. Nonnegative v. sums of squares

We say that a polynomial p ∈ R[x]2d in n variables x1, . . . , xn of degree ≤ 2d is

i) nonnegative if p(x1, . . . , xn) ≥ 0 for all x ∈ Rn;

ii) a sum of squares (sos) if there exist polynomials qj ∈ R[x]d such that p(x) =
k∑

j=1
qj(x)2.

Clearly, every sos polynomial is nonnegative. Positive multiples and convex combinations of non-
negative polynomials (respectively, sos polynomials) are again nonnegative (respectively, sos), thus

Pn,2d :=
{
p ∈ R[x]2d : p is nonnegative

}
Σn,2d :=

{
p ∈ R[x]2d : p is sos

}
are convex cones in the vector space R[x]2d ∼= RN , where N =

(
n+d
d

)
.

Exercise 1. Prove that Pn,2d is a closed semialgebraic set. Find an explicit description of P1,2 as
a semialgebraic set.

Solution to Exercise 1. This is a consequence of Quantifier Elimination, by eliminating the
quantifier ∀x in ∀x, p(x) ≥ 0. For example, for univariate quadratic polynomials, we have that

P1,2 = {p(x) = ax2 + bx + c : ∀x, p(x) ≥ 0}
= {p(x) = ax2 + bx + c : min

x∈R
p(x) ≥ 0}

= {p(x) = ax2 + bx + c : a > 0 and p(−b/2a), or a = b = 0 and p(0) ≥ 0}
= {ax2 + bx + c : a > 0 and b2 − 4ac ≤ 0, or a = b = 0 and c ≥ 0}
= {ax2 + bx + c : a ≥ 0, c ≥ 0, 4ac− b2 ≥ 0}.

Note that P1,2 is actually basic semialgebraic, and it is also a spectrahedron:

P1,2 =

{
ax2 + bx + c : ∀x,

(
1
x

)T (
c b/2
b/2 a

)(
1
x

)
≥ 0

}

=

{
ax2 + bx + c :

(
c b/2
b/2 a

)
� 0

}
As it turns out, Pn,2d is semialgebraic but it is not basic semialgebraic if 2d ≥ 4.1 In particular,
Pn,2d is not a spectrahedron if 2d ≥ 4.

Since Σn,2d ⊂ Pn,2d, a natural question is whether the converse inclusion Σn,2d ⊃ Pn,2d holds,
i.e., if nonnegative polynomials are sos. Remarkably, this is almost never the case:

Theorem 1 (Hilbert, 1888). The only cases in which Σn,2d = Pn,2d are:

a) Univariate polynomials, i.e., n = 1;
b) Quadratic polynomials, i.e., 2d = 2;
c) Bivariate quartics, i.e., n = 2, 2d = 4.

An example of p ∈ P2,6 \ Σ2,6 is the Motzkin polynomial p(x, y) = x4y2 + x2y4 − 3x2y2 + 1.

Exercise 2. Use the arithmetic-geometric inequality applied to {x4y2, x2y4, 1} to show that the
Motzkin polynomial is nonnegative. Think how you could try to show it is not sos.

1For a more details, see p. 52 in [BPT13].



Solution to Exercise 2. By the arithmetic-geometric inequality, we have that

x4y2 + x2y4 + 1

3
≥ 3
√

(x4y2)(x2y4) = x2y2,

that is, p(x, y) ≥ 0. If p(x, y) was sos, then one can show it would be a sum of terms of the form
(ax2y + bxy2 + cxy + d)2 but no such term has a negative coefficient for x2y2.

Exercise 3. Use the computations in Exercise 1 to show that Σ1,2 = P1,2. Think about how this
could be generalized prove the equality in Theorem 1 b).

Solution to Exercise 3. Let us use the spectrahedral description

P1,2 =

{
ax2 + bx + c : M(a, b, c) :=

(
c b/2
b/2 a

)
� 0

}
.

Since M(a, b, c) � 0, there exists a matrix P such that M(a, b, c) = P TP . Using, e.g., the Cholesky
decomposition, we find that, with a ≥ 0, c ≥ 0, 4ac− b2 ≥ 0, assuming for simplicity c > 0,2

P =

(√
c b

2
√
c

0
√
4ac−b2
2
√
c

)
.

Thus, setting v =

(
1
x

)
, we have

ax2 + bx + c = vT M(a, b, c) v = vT (P TP )v = (Pv)T (Pv).

Since Pv =
(

bx
2
√
c

+
√
c, x

√
4ac−b2
2
√
c

)
, the above yields the following sos decomposition:

ax2 + bx + c =

(
bx

2
√
c

+
√
c

)2

+

(
x
√

4ac− b2

2
√
c

)2

.

Therefore, P1,2 ⊂ Σ1,2 and hence P1,2 = Σ1,2.
One can prove the equality in Theorem 1 b) using a similar reasoning, identifying quadratic poly-

nomials in Pn,2 with (n+1)×(n+1) positive-semidefinite matrices operating on v = (1, x1, x2, . . . , xn).
In particular, Σn,2 = Pn,2 is a spectrahedron.

More generally, for general d, it can be shown that Σn,2d is a spectrahedral shadow3 of dimension(
n+2d
2d

)
, see [BPT13, Cor 3.40]. In particular, SDP can be used to test if p ∈ Σn,2d and find

polynomials qj ∈ R[x]d such that p =
∑

j q
2
j . Let us illustrate this with an example of p ∈ Σ1,4.

Exercise 4. ([BPT13, Ex. 3.35]) Use the following steps to find an sos decomposition for the
nonnegative polynomial p(x) = x4 + 4x3 + 6x2 + 4x + 5.

i) Let v = (1, x, x2) be the vector consisting of monomials of degree ≤ 2 and M ∈ Sym2(R3) be
a symmetric matrix. Determine affine-linear constraints on M equivalent to p(x) = vTMv, by
matching coefficients.

ii) Use SDP to find M � 0 satisfying the above constraints.
iii) Find P such that M = P TP and show that Pv yields the desired sos decomposition.

Solution to Exercise 4. Using basic calculus, we see that p(x) ≥ 4 for all x ∈ R, thus we have
that p ∈ P1,4 = Σ1,4, hence an sos decomposition exists.

2How would you handle the case c = 0? What are the possible values of a, b?
3But Σn,2d is not a spectrahedron, unless 2d = 2.

2



i) Writing M =

a00 a01 a02
a01 a11 a12
a02 a12 a22

, we have that

vTMv = a00 + 2a01x + x2(2a02 + a11) + 2a12x
3 + a22x

4.

So, matching coefficients with p(x) = x4 + 4x3 + 6x2 + 4x + 5 we find the linear constraints

a00 = 5, a01 = 2, a02 = 3− a11/2, a12 = 2, a22 = 1,

and a11 is free.
ii) Substituting these affine-linear constraints in M , we have

M =

 5 2 3− a11
2

2 a11 2
3− a11

2 2 1

 .

By Sylvester’s criterion, it is easy to see that the above is positive-semidefinite if and only if
4 ≤ a11 ≤ 8.

iii) Take, e.g., a11 = 6, so that M =

5 2 0
2 6 2
0 2 1

 � 0, and use the Cholesky decomposition to find

P such that M = P TP . Namely, we have

P =


√

5 2√
5

0

0
√

26
5

√
10
13

0 0
√

3
13

 ,

hence p(x) = vTMv = vT (P TP )v = (Pv)TPv yields the sos decomposition

p(x) = (Pv)TPv =

(
2x√

5
+
√

5

)2

+

(√
10

13
x2 +

√
26

5
x

)2

+

(√
3

13
x2

)2

.

As usual, this decomposition is not unique. For instance, the matrix

Q =

 0 2 1√
2
√

2 0√
3 0 0


also satisfies M = QTQ and hence yields the sos decomposition

p(x) = (Qv)TQv = (x2 + 2x)2 +
(√

2 +
√

2x
)2

+
(√

3
)2
.

Can you find an sos decomposition with only 2 squares?4
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4For nonnegative univariate polynomials, it is always possible to find an sos decomposition with only 2 squares!
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