Lecture 23

1. Nonnegative v. sums of squares

We say that a polynomial $p \in \mathbb{R}[x]_{2 d}$ in n variables x_{1}, \ldots, x_{n} of degree $\leq 2 d$ is
i) nonnegative if $p\left(x_{1}, \ldots, x_{n}\right) \geq 0$ for all $x \in \mathbb{R}^{n}$;
ii) a sum of squares (sos) if there exist polynomials $q_{j} \in \mathbb{R}[x]_{d}$ such that $p(x)=\sum_{j=1}^{k} q_{j}(x)^{2}$.

Clearly, every sos polynomial is nonnegative. Positive multiples and convex combinations of nonnegative polynomials (respectively, sos polynomials) are again nonnegative (respectively, sos), thus

$$
\begin{aligned}
P_{n, 2 d} & :=\left\{p \in \mathbb{R}[x]_{2 d}: p \text { is nonnegative }\right\} \\
\Sigma_{n, 2 d} & :=\left\{p \in \mathbb{R}[x]_{2 d}: p \text { is sos }\right\}
\end{aligned}
$$

are convex cones in the vector space $\mathbb{R}[x]_{2 d} \cong \mathbb{R}^{N}$, where $N=\binom{n+d}{d}$.
Exercise 1. Prove that $P_{n, 2 d}$ is a closed semialgebraic set. Find an explicit description of $P_{1,2}$ as a semialgebraic set.
Solution to Exercise 1. This is a consequence of Quantifier Elimination, by eliminating the quantifier $\forall x$ in $\forall x, p(x) \geq 0$. For example, for univariate quadratic polynomials, we have that

$$
\begin{aligned}
P_{1,2} & =\left\{p(x)=a x^{2}+b x+c: \forall x, p(x) \geq 0\right\} \\
& =\left\{p(x)=a x^{2}+b x+c: \min _{x \in \mathbb{R}} p(x) \geq 0\right\} \\
& =\left\{p(x)=a x^{2}+b x+c: a>0 \text { and } p(-b / 2 a), \text { or } a=b=0 \text { and } p(0) \geq 0\right\} \\
& =\left\{a x^{2}+b x+c: a>0 \text { and } b^{2}-4 a c \leq 0, \text { or } a=b=0 \text { and } c \geq 0\right\} \\
& =\left\{a x^{2}+b x+c: a \geq 0, c \geq 0,4 a c-b^{2} \geq 0\right\} .
\end{aligned}
$$

Note that $P_{1,2}$ is actually basic semialgebraic, and it is also a spectrahedron:

$$
\begin{aligned}
P_{1,2} & =\left\{a x^{2}+b x+c: \forall x,\binom{1}{x}^{T}\left(\begin{array}{cc}
c & b / 2 \\
b / 2 & a
\end{array}\right)\binom{1}{x} \geq 0\right\} \\
& =\left\{a x^{2}+b x+c:\left(\begin{array}{cc}
c & b / 2 \\
b / 2 & a
\end{array}\right) \succeq 0\right\}
\end{aligned}
$$

As it turns out, $P_{n, 2 d}$ is semialgebraic but it is not basic semialgebraic if $2 d \geq 4 \xrightarrow{1}$ In particular, $P_{n, 2 d}$ is not a spectrahedron if $2 d \geq 4$.

Since $\Sigma_{n, 2 d} \subset P_{n, 2 d}$, a natural question is whether the converse inclusion $\Sigma_{n, 2 d} \supset P_{n, 2 d}$ holds, i.e., if nonnegative polynomials are sos. Remarkably, this is almost never the case:

Theorem 1 (Hilbert, 1888). The only cases in which $\Sigma_{n, 2 d}=P_{n, 2 d}$ are:
a) Univariate polynomials, i.e., $n=1$;
b) Quadratic polynomials, i.e., $2 d=2$;
c) Bivariate quartics, i.e., $n=2,2 d=4$.

An example of $p \in P_{2,6} \backslash \Sigma_{2,6}$ is the Motzkin polynomial $p(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$.
Exercise 2. Use the arithmetic-geometric inequality applied to $\left\{x^{4} y^{2}, x^{2} y^{4}, 1\right\}$ to show that the Motzkin polynomial is nonnegative. Think how you could try to show it is not sos.

[^0]Solution to Exercise 2. By the arithmetic-geometric inequality, we have that

$$
\frac{x^{4} y^{2}+x^{2} y^{4}+1}{3} \geq \sqrt[3]{\left(x^{4} y^{2}\right)\left(x^{2} y^{4}\right)}=x^{2} y^{2}
$$

that is, $p(x, y) \geq 0$. If $p(x, y)$ was sos, then one can show it would be a sum of terms of the form $\left(a x^{2} y+b x y^{2}+c x y+d\right)^{2}$ but no such term has a negative coefficient for $x^{2} y^{2}$.

Exercise 3. Use the computations in Exercise 1 to show that $\Sigma_{1,2}=P_{1,2}$. Think about how this could be generalized prove the equality in Theorem 1 b).

Solution to Exercise 3. Let us use the spectrahedral description

$$
P_{1,2}=\left\{a x^{2}+b x+c: M(a, b, c):=\left(\begin{array}{cc}
c & b / 2 \\
b / 2 & a
\end{array}\right) \succeq 0\right\} .
$$

Since $M(a, b, c) \succeq 0$, there exists a matrix P such that $M(a, b, c)=P^{T} P$. Using, e.g., the Cholesky decomposition, we find that, with $a \geq 0, c \geq 0,4 a c-b^{2} \geq 0$, assuming for simplicity $c>0 ?^{2}$

$$
P=\left(\begin{array}{cc}
\sqrt{c} & \frac{b}{2 \sqrt{c}} \\
0 & \frac{\sqrt{4 a c-b^{2}}}{2 \sqrt{c}}
\end{array}\right) .
$$

Thus, setting $v=\binom{1}{x}$, we have

$$
a x^{2}+b x+c=v^{T} M(a, b, c) v=v^{T}\left(P^{T} P\right) v=(P v)^{T}(P v) .
$$

Since $P v=\left(\frac{b x}{2 \sqrt{c}}+\sqrt{c}, \frac{x \sqrt{4 a c-b^{2}}}{2 \sqrt{c}}\right)$, the above yields the following sos decomposition:

$$
a x^{2}+b x+c=\left(\frac{b x}{2 \sqrt{c}}+\sqrt{c}\right)^{2}+\left(\frac{x \sqrt{4 a c-b^{2}}}{2 \sqrt{c}}\right)^{2} .
$$

Therefore, $P_{1,2} \subset \Sigma_{1,2}$ and hence $P_{1,2}=\Sigma_{1,2}$.
One can prove the equality in Theorem 1 b) using a similar reasoning, identifying quadratic polynomials in $P_{n, 2}$ with $(n+1) \times(n+1)$ positive-semidefinite matrices operating on $v=\left(1, x_{1}, x_{2}, \ldots, x_{n}\right)$. In particular, $\Sigma_{n, 2}=P_{n, 2}$ is a spectrahedron.

More generally, for general d, it can be shown that $\Sigma_{n, 2 d}$ is a spectrahedral shadow ${ }^{3}$ of dimension $\binom{n+2 d}{2 d}$, see BPT13, Cor 3.40]. In particular, SDP can be used to test if $p \in \Sigma_{n, 2 d}$ and find polynomials $q_{j} \in \mathbb{R}[x]_{d}$ such that $p=\sum_{j} q_{j}^{2}$. Let us illustrate this with an example of $p \in \Sigma_{1,4}$.
Exercise 4. ([BPT13, Ex. 3.35]) Use the following steps to find an sos decomposition for the nonnegative polynomial $p(x)=x^{4}+4 x^{3}+6 x^{2}+4 x+5$.
i) Let $v=\left(1, x, x^{2}\right)$ be the vector consisting of monomials of degree ≤ 2 and $M \in \operatorname{Sym}^{2}\left(\mathbb{R}^{3}\right)$ be a symmetric matrix. Determine affine-linear constraints on M equivalent to $p(x)=v^{T} M v$, by matching coefficients.
ii) Use SDP to find $M \succeq 0$ satisfying the above constraints.
iii) Find P such that $M=P^{T} P$ and show that $P v$ yields the desired sos decomposition.

Solution to Exercise 4. Using basic calculus, we see that $p(x) \geq 4$ for all $x \in \mathbb{R}$, thus we have that $p \in P_{1,4}=\Sigma_{1,4}$, hence an sos decomposition exists.

[^1]i) Writing $M=\left(\begin{array}{lll}a_{00} & a_{01} & a_{02} \\ a_{01} & a_{11} & a_{12} \\ a_{02} & a_{12} & a_{22}\end{array}\right)$, we have that

$$
v^{T} M v=a_{00}+2 a_{01} x+x^{2}\left(2 a_{02}+a_{11}\right)+2 a_{12} x^{3}+a_{22} x^{4}
$$

So, matching coefficients with $p(x)=x^{4}+4 x^{3}+6 x^{2}+4 x+5$ we find the linear constraints

$$
a_{00}=5, a_{01}=2, a_{02}=3-a_{11} / 2, a_{12}=2, a_{22}=1,
$$

and a_{11} is free.
ii) Substituting these affine-linear constraints in M, we have

$$
M=\left(\begin{array}{ccc}
5 & 2 & 3-\frac{a_{11}}{2} \\
2 & a_{11} & 2 \\
3-\frac{a_{11}}{2} & 2 & 1
\end{array}\right)
$$

By Sylvester's criterion, it is easy to see that the above is positive-semidefinite if and only if $4 \leq a_{11} \leq 8$.
iii) Take, e.g., $a_{11}=6$, so that $M=\left(\begin{array}{lll}5 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 1\end{array}\right) \succ 0$, and use the Cholesky decomposition to find P such that $M=P^{T} P$. Namely, we have

$$
P=\left(\begin{array}{ccc}
\sqrt{5} & \frac{2}{\sqrt{5}} & 0 \\
0 & \sqrt{\frac{26}{5}} & \sqrt{\frac{10}{13}} \\
0 & 0 & \sqrt{\frac{3}{13}}
\end{array}\right),
$$

hence $p(x)=v^{T} M v=v^{T}\left(P^{T} P\right) v=(P v)^{T} P v$ yields the sos decomposition

$$
p(x)=(P v)^{T} P v=\left(\frac{2 x}{\sqrt{5}}+\sqrt{5}\right)^{2}+\left(\sqrt{\frac{10}{13}} x^{2}+\sqrt{\frac{26}{5}} x\right)^{2}+\left(\sqrt{\frac{3}{13}} x^{2}\right)^{2} .
$$

As usual, this decomposition is not unique. For instance, the matrix

$$
Q=\left(\begin{array}{ccc}
0 & 2 & 1 \\
\sqrt{2} & \sqrt{2} & 0 \\
\sqrt{3} & 0 & 0
\end{array}\right)
$$

also satisfies $M=Q^{T} Q$ and hence yields the sos decomposition

$$
p(x)=(Q v)^{T} Q v=\left(x^{2}+2 x\right)^{2}+(\sqrt{2}+\sqrt{2} x)^{2}+(\sqrt{3})^{2} .
$$

Can you find an sos decomposition with only 2 squares? 4^{4}

References

[BPT13] G. Blekherman, P. A. Parrilo, and R. R. Thomas. Semidefinite optimization and convex algebraic geometry, vol. 13 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013.

[^2]
[^0]: ${ }^{1}$ For a more details, see p. 52 in BPT13.

[^1]: ${ }^{2}$ How would you handle the case $c=0$? What are the possible values of a, b ?
 ${ }^{3}$ But $\Sigma_{n, 2 d}$ is not a spectrahedron, unless $2 d=2$.

[^2]: ${ }^{4}$ For nonnegative univariate polynomials, it is always possible to find an sos decomposition with only 2 squares!

