Lecture 4

1. Convex geometry

A set $S \subset \mathbb{R}^{n}$ is convex if given any $x, y \in S$, the line segment $(1-t) x+t y, 0 \leq t \leq 1$, joining x and y lies entirely in S.

Exercise 1. Use the definition of convexity given above to:
(i) give examples of sets that are convex and not convex;
(ii) classify the convex sets in \mathbb{R};
(iii) prove that the intersection of two convex sets is convex;
(iv) decide if, in general, the union of convex sets is convex.

A set $S \subset \mathbb{R}^{n}$ is a polyhedron if it is of the form

$$
\begin{equation*}
S=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}, \tag{1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is an $m \times n$ matrix, $b=\left(b_{i}\right) \in \mathbb{R}^{m}$, with indices $1 \leq i \leq m$ and $1 \leq j \leq n$. In other words, $S=\bigcap_{1 \leq i \leq m} H_{i}$ is the intersection of half-spaces $H_{i}=\left\{x \in \mathbb{R}^{n}: a_{i}^{T} x \leq b_{i}\right\}$, where $a_{i} \in \mathbb{R}^{n}$ denotes the i th row of A.

Exercise 2. Show that half-spaces are convex and conclude that polyhedra are convex.
Exercise 3. Identify the polyhedra (1) where A and b are as follows:
(i) $A=\binom{-1}{1}, b=\binom{2}{3}$
(ii) $A=\binom{-1}{1}, b=\binom{-3}{2}$
(iii) $A=\left(\begin{array}{cc}1 & -2 \\ 0 & 1 \\ 3 & 2\end{array}\right), b=\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$
(iv) $A=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), b=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right)$

Solution to Exercise 2. Let $H=\left\{x \in \mathbb{R}^{n}: a^{T} x \leq b\right\}$, where $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, be a half-space. If $x, y \in H$, then $a^{T} x \leq b$ and $a^{T} y \leq b$. Therefore, if $0 \leq t \leq 1$, we have

$$
a^{T}((1-t) x+t y)=(1-t) a^{T} x+t a^{T} y \leq(1-t) b+t b=b,
$$

i.e., $(1-t) x+t y \in H$, which proves that H is convex. Since polyhedra are intersections of halfspaces, which are convex, it follows by Exercise 1 (iii) that polyhedra are convex.
Solution to Exercise 3. The polyhedra are as follows:
(i) Interval $[-2,3]$;
(ii) Empty set \emptyset;
(iii) $x_{1}-2 x_{2} \leq 2, x_{2} \leq 1,3 x_{1}+2 x_{2} \leq-3$

(iv) Unit cube $[0,1] \times[0,1] \times[0,1]$.

A point $v \in S$ in a convex set is called extremal if $v=(1-t) x+t y$ with $x, y \in S$ and $0 \leq t \leq 1$ implies that either $t=0$ or $t=1$. In other words, v is extremal if it cannot be placed in the interior of any line segment with endpoints in S.

Exercise 4. Determine the extremal points of the following convex sets:
(i) A bounded polyhedron $S \subset \mathbb{R}^{n}$
(ii) The unit ball $B=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$

A convex combination of the points $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$ is any point of the form

$$
c_{1} x_{1}+\cdots+c_{r} x_{r} \in \mathbb{R}^{n},
$$

where $c_{1}, \ldots, c_{r} \in \mathbb{R}$ satisfy $\sum_{i=1}^{r} c_{i}=1$ and $c_{i} \geq 0$ for all $1 \leq i \leq r$. The set of all convex combinations of x_{1}, \ldots, x_{r} is called the convex hull of x_{1}, \ldots, x_{r}, and denoted $\operatorname{conv}\left(x_{1}, \ldots, x_{r}\right)$.

Exercise 5. Prove that $\operatorname{conv}\left(x_{1}, \ldots, x_{r}\right)$ is convex.
Exercise 6. What is the convex hull of 2 points in \mathbb{R}^{n} ?
Exercise 7. What is the convex hull of n points in \mathbb{R}^{2} ?

