Lecture 5

1. Extremal points

Recall that $S \subset \mathbb{R}^{n}$ is convex if given any $x, y \in S$, the line segment $(1-t) x+t y, 0 \leq t \leq 1$, joining x and y lies entirely in S. A set $S \subset \mathbb{R}^{n}$ is bounded if there exists $R>0$ such that all points in S are at distance at most R from $0 \in \mathbb{R}^{n}$, that is, for all $x \in S,\|x\| \leq R$.

A point $v \in S$ in a convex set is called extremal if $v=(1-t) x+t y$ with $x, y \in S$ and $0 \leq t \leq 1$ implies that either $t=0$ or $t=1$. In other words, v is extremal if it cannot be placed in the interior of any line segment with endpoints in S.

Exercise 1. Determine the extremal points of the following convex sets:
(i) A bounded polyhedron $S \subset \mathbb{R}^{n}$
(ii) The unit ball $B=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$

Solution to Exercise 1. The extremal points are:
(i) vertices of S (there are only finitely many);
(ii) all the points in the boundary $\partial B=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ (there are infinitely many)

A convex combination of the points $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$ is any point of the form

$$
c_{1} x_{1}+\cdots+c_{r} x_{r} \in \mathbb{R}^{n},
$$

where $c_{1}, \ldots, c_{r} \in \mathbb{R}$ satisfy $\sum_{i=1}^{r} c_{i}=1$ and $c_{i} \geq 0$ for all $1 \leq i \leq r$. The set of all convex combinations of x_{1}, \ldots, x_{r} is called the convex hull of x_{1}, \ldots, x_{r}, and denoted $\operatorname{conv}\left(x_{1}, \ldots, x_{r}\right)$.

Exercise 2. Prove that $\operatorname{conv}\left(x_{1}, \ldots, x_{r}\right)$ is convex.
Exercise 3. What is the convex hull of 2 points in \mathbb{R}^{n} ?
Exercise 4. What is the convex hull of n points in \mathbb{R}^{2} ?
The following are foundational statements that we will use but not prove. (You might want to think about how you would prove them.)

Theorem 1. A polyhedron is bounded if and only if it does not contain a line.
Theorem 2 (Krein-Milman, baby version). A bounded polyhedron coincides with the convex hull of its vertices (i.e., its extremal points).

By the above, "determining" a bounded polyhedron is the same as "determining" its vertices. In order to do this using as input the description $S=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ of a polyhedron as an intersection of half-spaces $a_{i}^{T} x \leq b_{i}$, we use the following result:

Theorem 3. Consider the polyhedron $S=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, where A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. A point $v \in S$ is a vertex of S if and only if there exist n linearly independent inequality constraints of S that hold with equality at v, i.e., there exist $i_{1}, \ldots, i_{n} \in\{1, \ldots, m\}$ such that $a_{i_{1}}^{T} v=b_{i_{1}}, \ldots, a_{i_{n}}^{T} v=b_{i_{n}}$ and $\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$ are linearly independent.

The above yields a method to find all vertices of a polyhedron $S=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, namely one can proceed as follows. For each ${ }^{11}$ subset $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1, \ldots, m\}$, do:
(i) Check if $a_{i_{1}}, \ldots, a_{i_{n}}$ are linearly independent (if NO, then STOP);
(ii) Compute the unique solution $v \in \mathbb{R}^{n}$ to $a_{i_{1}}^{T} v=b_{i_{1}}, \ldots, a_{i_{n}}^{T} v=b_{i_{n}}$;
(iii) If $v \in S$, i.e., $A v \leq b$, then v is a vertex. If not, then it is not a vertex.

[^0]Running the above for loop through all subsets of $\{1, \ldots, m\}$ and collecting the resulting vertices, one obtains the complete list of vertices of S. In particular, this proves that a polyhedron only has finitely many vertices.

Exercise 5. Find all vertices of the polyhedron $S=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ where
(i) $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1 \\ 1 & 1\end{array}\right), b=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
(ii) $A=\left(\begin{array}{cc}2 & 4 \\ 1 & 1 \\ 0 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & -1\end{array}\right), b=\left(\begin{array}{c}12 \\ 5 \\ 5 / 2 \\ 4 \\ 0 \\ 0\end{array}\right)$. Note this polygon appeared in Lecture 3, Exercise 4 .

2. Linear programs in any number of variables

A general linear program ($L P$) in n variables $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an optimization problem of the form

$$
\begin{align*}
\min \quad c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \quad \text { s.t. } \quad & a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n} \leq b_{1}, \\
& a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n} \leq b_{2}, \tag{1}\\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m n} x_{n} \leq b_{m} .
\end{align*}
$$

The above constraints might have been obtained from linear constraints with $\leq,=$, or \geq, using the elementary tricks we discussed in lecture, and might (or might not) include the nonnegativity constraints $x_{1} \geq 0, \ldots x_{n} \geq 0$. Recall that maximization problems reduce to the above as well.

Note that the above LP can be rewritten in matrix notation as

$$
\begin{equation*}
\min \quad c^{T} x \quad \text { s.t. } \quad A x \leq b, \tag{2}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}, b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}^{m}$, and

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The rows of A are denoted $a_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), \ldots, a_{m}=\left(a_{m 1}, a_{m 2}, \ldots, a_{m n}\right)$. These conventions are as in earlier lectures; in particular, the indices have ranges $1 \leq i \leq m$ and $1 \leq j \leq n$. Finally, the following statement explains the relevance of extremal points.
Theorem 4. If the optimization problem (2) is feasible and bounded, i.e., the polyhedron $S=$ $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is nonempty and bounded, then there exists an extremal point $v \in S$ which is an optimal solution.

[^0]: ${ }^{1}$ Note there are $\binom{m}{n}$ such subsets.

