Lecture 5

1. Extremal points

Recall that $S \subset \mathbb{R}^n$ is *convex* if given any $x, y \in S$, the line segment (1-t)x + ty, $0 \le t \le 1$, joining x and y lies entirely in S. A set $S \subset \mathbb{R}^n$ is *bounded* if there exists R > 0 such that all points in S are at distance at most R from $0 \in \mathbb{R}^n$, that is, for all $x \in S$, $||x|| \le R$.

A point $v \in S$ in a convex set is called *extremal* if v = (1 - t)x + ty with $x, y \in S$ and $0 \le t \le 1$ implies that either t = 0 or t = 1. In other words, v is extremal if it *cannot* be placed in the *interior* of any line segment with endpoints in S.

Exercise 1. Determine the extremal points of the following convex sets:

- (i) A bounded polyhedron $S \subset \mathbb{R}^n$
- (ii) The unit ball $B = \{x \in \mathbb{R}^n : ||x|| \le 1\}$

Solution to Exercise 1. The extremal points are:

- (i) vertices of S (there are only finitely many);
- (ii) all the points in the boundary $\partial B = \{x \in \mathbb{R}^n : ||x|| = 1\}$ (there are infinitely many)

A convex combination of the points $x_1, \ldots, x_r \in \mathbb{R}^n$ is any point of the form

$$c_1x_1 + \dots + c_rx_r \in \mathbb{R}^n,$$

where $c_1, \ldots, c_r \in \mathbb{R}$ satisfy $\sum_{i=1}^r c_i = 1$ and $c_i \geq 0$ for all $1 \leq i \leq r$. The set of all convex combinations of x_1, \ldots, x_r is called the *convex hull* of x_1, \ldots, x_r , and denoted $\operatorname{conv}(x_1, \ldots, x_r)$.

Exercise 2. Prove that $conv(x_1, \ldots, x_r)$ is convex.

Exercise 3. What is the convex hull of 2 points in \mathbb{R}^n ?

Exercise 4. What is the convex hull of n points in \mathbb{R}^2 ?

The following are foundational statements that we will use but not prove. (You might want to think about how you would prove them.)

Theorem 1. A polyhedron is bounded if and only if it does not contain a line.

Theorem 2 (Krein-Milman, baby version). A bounded polyhedron coincides with the convex hull of its vertices (i.e., its extremal points).

By the above, "determining" a bounded polyhedron is the same as "determining" its vertices. In order to do this using as input the description $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ of a polyhedron as an intersection of half-spaces $a_i^T x \leq b_i$, we use the following result:

Theorem 3. Consider the polyhedron $S = \{x \in \mathbb{R}^n : Ax \leq b\}$, where A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. A point $v \in S$ is a vertex of S if and only if there exist n linearly independent inequality constraints of S that hold with equality at v, i.e., there exist $i_1, \ldots, i_n \in \{1, \ldots, m\}$ such that $a_{i_1}^T v = b_{i_1}, \ldots, a_{i_n}^T v = b_{i_n}$ and $\{a_{i_1}, \ldots, a_{i_n}\}$ are linearly independent.

The above yields a method to find all vertices of a polyhedron $S = \{x \in \mathbb{R}^n : Ax \leq b\}$, namely one can proceed as follows. For each¹ subset $\{i_1, \ldots, i_n\}$ of $\{1, \ldots, m\}$, do:

- (i) Check if a_{i_1}, \ldots, a_{i_n} are linearly independent (if NO, then STOP);
- (ii) Compute the unique solution $v \in \mathbb{R}^n$ to $a_{i_1}^T v = b_{i_1}, \ldots, a_{i_n}^T v = b_{i_n}$;
- (iii) If $v \in S$, i.e., $Av \leq b$, then v is a vertex. If not, then it is not a vertex.

¹Note there are $\binom{m}{n}$ such subsets.

Running the above for loop through all subsets of $\{1, \ldots, m\}$ and collecting the resulting vertices, one obtains the complete list of vertices of S. In particular, this proves that a polyhedron only has finitely many vertices.

Exercise 5. Find all vertices of the polyhedron $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ where

(i)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

(ii) $A = \begin{pmatrix} 2 & 4 \\ 1 & 1 \\ 0 & 1 \\ 1 & -1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 12 \\ 5 \\ 5/2 \\ 4 \\ 0 \\ 0 \end{pmatrix}$. Note this polygon appeared in Lecture 3, Exercise 4.

2. LINEAR PROGRAMS IN ANY NUMBER OF VARIABLES

A general linear program (LP) in n variables $x = (x_1, x_2, ..., x_n)$ is an optimization problem of the form

(1)
$$\min \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n \quad \text{s.t.} \quad a_{11} x_1 + a_{12} x_2 + a_{1n} x_n \le b_1, \\ a_{21} x_1 + a_{22} x_2 + a_{2n} x_n \le b_2, \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + a_{mn} x_n \le b_m.$$

The above constraints might have been obtained from linear constraints with \leq , =, or \geq , using the elementary tricks we discussed in lecture, and might (or might not) include the nonnegativity constraints $x_1 \geq 0, \ldots x_n \geq 0$. Recall that maximization problems reduce to the above as well.

Note that the above LP can be rewritten in matrix notation as (2) min $c^T x$ s.t. $A x \leq b$, where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $c = (c_1, c_2, \dots, c_n) \in \mathbb{R}^n$, $b = (b_1, \dots, b_m) \in \mathbb{R}^m$, and

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

The rows of A are denoted $a_1 = (a_{11}, a_{12}, \ldots, a_{1n}), \ldots, a_m = (a_{m1}, a_{m2}, \ldots, a_{mn})$. These conventions are as in earlier lectures; in particular, the indices have ranges $1 \le i \le m$ and $1 \le j \le n$. Finally, the following statement explains the relevance of extremal points.

Theorem 4. If the optimization problem (2) is feasible and bounded, i.e., the polyhedron $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ is nonempty and bounded, then there exists an extremal point $v \in S$ which is an optimal solution.