Quantum Dynamics of Domain Walls in Molecular Magnets
 D. A. Garanin and E. M. Chudnovsky Lehman College, City University of New York

Our main point:

Tunneling relaxation in MMs can occur via self-induced resonance tuning of the dipolar field leading to a propagating front of Landau-Zener transitions.

- For large external bias this is quantum deflagration (with heating added)
- For small external bias this is propagation of quantum domain walls

Domain walls and the underlying ordering') are due to the DDI

Investigated and observed on several MMs (Fernandez \& Alonso; Martinez Hidalgo Chudnovsky and Aharony; Luis et al; Morello et al; Belesi, Borsa and Powell)

Time-nonlinear LZ problems

- Inverse Landau-Zener problem
given $P(t) \xrightarrow{?} W(t)$ xact solution: Garanin \& Schilling, EPL-2002
 Manipulation of quantum states
- Self-consistent LZ problem - $W(t)$ created by transitions of other spins

Example: Domain walls in ferromagnets. Self-consistent time-dependent field on a spin results in a complete $L Z$ transition. Exact analytical Walker solution for the dissipationless DW motion - Döring mass of the DW
Moving DW $\leftrightarrow \mathrm{LZ}$ front
In general, LZ transition is incomplete and there are excitations behind the fron

Formulation of the model

Equation of motion:

Use density-matrix equation for a pseudospin $1 / 2$ coupled to bath. With ne obtains $\quad \boldsymbol{\sigma}=\operatorname{Tr}(\hat{\rho} \hat{\boldsymbol{\sigma}}), \quad \hbar \boldsymbol{\omega}_{0}=\mathbf{A}(t)=\mathbf{e}_{z} W(t)+\mathbf{e}_{x} \Delta$
$\dot{\boldsymbol{\sigma}}=\left[\boldsymbol{\sigma} \times \boldsymbol{\omega}_{0}\right]-\frac{\Gamma}{2}\left(\boldsymbol{\sigma}-\frac{\boldsymbol{\omega}_{0} \cdot \boldsymbol{\sigma}}{\boldsymbol{\omega}_{0}^{2}} \boldsymbol{\omega}_{0}\right)-\Gamma \frac{\boldsymbol{\omega}_{0}}{\omega_{0}}\left(\frac{\boldsymbol{\omega}_{0} \cdot \boldsymbol{\sigma}}{\omega_{0}}-\sigma^{\boldsymbol{\sigma}}\right)$,
Here Γ is the relaxation rate and
is the equilibrium magnetization
$\sigma^{\mathrm{cq}}=\tanh \frac{\hbar \omega_{0}}{2 k_{\mathrm{B}} T}$
Becomes Curie-Weiss equation
Dipolar field: $\quad W=g \mu_{\mathrm{B}} S\left(B_{z}+B_{i, z}^{(\mathrm{D})}\right)=W_{\mathrm{cxt}}+W_{i}^{(\mathrm{D})}$
where $\quad W_{i}^{(\mathrm{D})}=E_{D} D_{i, z}, \quad E_{D}=\frac{\left(g \mu_{\mathrm{B}} S\right)^{2}}{v_{0}}, \quad D_{i, z z}=\sum \phi_{i j} \sigma_{j z}$
and $\quad \phi_{i j}=v_{0} \frac{3\left(\mathbf{e}_{2} \bullet \mathbf{n}_{i j}\right)^{2}-1}{r_{i j}^{3}}, \quad \mathbf{n}_{i j}=\frac{\mathbf{r}_{i j}}{r_{i j}}$
Uniformly magnetized ellipsoid: $\quad D_{z z}=\sigma_{z} \sum \phi_{j} \equiv \bar{D}_{z z} \sigma$
Shape dependence $\bar{D}_{z z}^{\text {cyl) }}=\bar{D}_{z z}^{\text {(sph })}+4 \pi v\left(1 / 3-n_{z}\right)$
Small sphere:
Inside summation
n_{z}-demagnetizing factor
v - number of sublattices, 2 for Mn12
$\bar{D}_{z z}^{\text {(sh) })}=\left\{\begin{array}{cc}0, & \begin{array}{c}\text { simple cubic } \\ 2.155,\end{array} \\ 4.072, & \mathrm{Mn}_{12} \text { (body centered tetragonal) } \\ \mathrm{Fe}_{8}\end{array} \Longleftrightarrow \bar{D}_{z z}^{\text {(es) }}=10.53\right.$

Magnetic ordering

For $\Delta \ll E_{\mathrm{D}} \bar{D}_{z z} \quad$ the Curie-Weiss equation reads

$$
\sigma_{z}(z)=\tanh \left(\frac{E_{\mathrm{D}}}{2 k_{\mathrm{B}} T} D_{z z}(z)\right)
$$

Uniform solution: $D_{z z}=\bar{D}_{z z} \sigma_{z} \longrightarrow T_{\mathrm{C}}=E_{\mathrm{D}} \bar{D}_{z z} / k_{\mathrm{B}}$

For $\mathrm{Mn}_{12} \quad E_{\mathrm{D}} / k_{\mathrm{B}} \simeq 0.0671 \mathrm{~K}$
Thus for a Mn_{12} cylinder: $\quad T_{\mathrm{C}} \simeq 0.782 \mathrm{~K}$
comparable with the experimental value $0.9 \mathrm{~K}, \mathrm{~F}$. Luis et al, PRL-2005

Static domain wall
Inhomogeneously magnetized long cylinder of radius R :
$D_{z z}(z)=\nu \int_{-L / 2}^{L / 2} d z^{\prime} \frac{2 \pi R^{2} \sigma_{z}\left(z^{\prime}\right)}{\left[\left(z^{\prime}-z\right)^{2}+R^{2}\right]^{3 / 2}}-k \sigma_{z}(z)$
where \quad Local term
$k \equiv 8 \pi \nu / 3-\bar{D}_{z z}^{(\mathrm{sph})}=4 \pi \nu-\bar{D}_{z z}^{(\mathrm{cyl})}>0$,
$k=14.6$ for Mn_{12} and $k=4.31$ for Fe_{8}
e Curie-Weiss equation
$\sigma_{z}(z)=\tanh \left(\frac{E_{\mathrm{D}}}{2 k_{\mathrm{B}} T} D_{z z}(z)\right)$
s an integral equation!
σ_{x} is due to Δ and very small, the DW is linear (Ising-like)

Numerical solution for the DW profile

FIG. 1: Magnetization profile of a domain-wall in a Mn_{12} cylinder at two different temperatures.

Domain-wall mobility

For small B_{z} the DW speed v_{DW} is linear in B_{z}
$v_{\mathrm{Dw}} \cong \mu_{\mathrm{Dw}} B_{z}, \quad \mu_{\mathrm{Dw}} \propto\left\{\begin{array}{l}1 / \Gamma, \quad \text { standard DWs with }|\mathbf{m}|=\text { const } \\ \Gamma, \quad|\mathbf{m}| \neq \text { const (linear DWs) }\end{array}\right.$
DW mobility μ_{DW} follows from the static DW profile from the energy balance:

$$
v_{\mathrm{DW}}=\frac{S \sigma_{\infty} g \mu_{\mathrm{B}} B_{z}}{k_{\mathrm{B}} T}\left[\int_{-\infty}^{\infty} d z \frac{1}{\Gamma} \frac{1}{1-\sigma_{z}^{2}}\left(\frac{d \sigma_{z}}{d z}\right)^{2}\right]^{-1}
$$

Direct phonon processes:

$$
\Gamma=\frac{S^{2} \Delta^{2} \omega_{0}\left(g \mu_{B} H_{\perp}\right)^{2}}{12 \pi E_{t}^{4}} \operatorname{coth} \frac{\hbar \omega_{0}}{2 k_{\mathrm{B}} T}
$$

At, e.g., $S=10, B_{z}=0.1 \mathrm{~T}, T=1 \mathrm{~K}$.
and $R=1 \mathrm{~mm}$, this gives $v_{\mathrm{DW}} \sim 1 \mathrm{~m} / \mathrm{s}$ for $\langle\Gamma\rangle=10^{3}$
s^{-1} and $v_{\mathrm{DW}} \sim 10^{3} \mathrm{~m} / \mathrm{s}$ for $\langle\Gamma\rangle=10^{6} \mathrm{~s}^{-1}$

