9 – Fluids

Three *ordinary* states (phases) of the matter:

- Solids – maintain volume and shape
- Liquids – maintain volume but do not maintain shape
- Gases – do not maintain volume, spread over the whole region

Further states of the matter: Glass (butter!), liquid crystals, colloids, etc.

Liquids and gases are called **fluids**

There is a boundary between solids and fluids since solids have crystal lattice and fluids not. On the contrary, liquids can be made gases without crossing any boundary.

- **Phase diagram of the water**

 - **Solid**
 - **Liquid**
 - **Gas**

 - **Triple point**
 - **Critical point**
Density and pressure

In contrast to the mechanics of solid bodies that retain their shape and thus can be considered as the whole, performing translational and rotational motions, fluids usually cannot be considered as the whole (think of water flowing through a pipe). For this reason fluids are usually described by \textit{local} quantities such as density (instead of mass) and pressure (instead of force).

Density: \[\rho_{\text{average}} = \frac{m}{V} \]

and \[\rho = \frac{m}{V}, \quad V \to 0 \]

For liquids density is practically the same as the average density, that is, the density is the same everywhere in the liquid. For gases, such as the Earth's atmosphere, the density can vary in the space.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Density, g/cm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.00 (or 1000 kg/m3)</td>
</tr>
<tr>
<td>Mercury</td>
<td>13.6</td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.68</td>
</tr>
<tr>
<td>Alcohole</td>
<td>0.79</td>
</tr>
<tr>
<td>Ice</td>
<td>0.917</td>
</tr>
<tr>
<td>Concrete</td>
<td>2.3</td>
</tr>
<tr>
<td>Aluminium</td>
<td>2.7</td>
</tr>
<tr>
<td>Iron</td>
<td>7.8</td>
</tr>
<tr>
<td>Lead</td>
<td>11.3</td>
</tr>
<tr>
<td>Gold</td>
<td>19.3</td>
</tr>
<tr>
<td>Wood</td>
<td>0.3-0.9</td>
</tr>
</tbody>
</table>
Pressure

\[P = \frac{F_\perp}{S}, \quad F_\perp - \text{total force applied } \perp \text{ to a surface of area } S \]

For fluids at rest there are no forces parallel to the surface since fluids do not retain their shape and thus they cannot resist such forces. As soon as a parallel force is applied, fluid begins to move.

Unit of the pressure: \(1 \text{ N/m}^2 = 1 \text{ Pa} \) [Blaise Pascal (1623-1662)]

Other units:
- \(1 \text{ atm} = 1.013 \times 10^5 \text{ Pa} \)
- \(1 \text{ bar} = 10^5 \text{ Pa} \approx 1 \text{ atm} \)
- \(1 \text{ mm Hg} = 133 \text{ Pa} \) (1 atm = 760 mm Hg)

Contrary to the force, pressure is not a vector but scalar. According to Newton’s second law, pressure from the wall of a vessel onto the fluid is the same as pressure from the fluid onto the wall. Similarly one can consider an imaginary membrane inside the fluid and define pressure exerted from the fluid on one side of the membrane upon the fluid on ist other side. So one can define pressure everywhere in the fluid. Pressure in fluids cannot be negative (we cannot pull a fluid)
Pascal’s principle

In the absence of gravity, pressure in the fluid at rest is uniformly transformed in all directions and it is the same everywhere.

We will see that in the presence of gravity pressure changes from one point to the other but still, it does not depend on the direction of the imaginary membrane we use to define the pressure inside the fluid.

Pascal’s principle follows from the work principle (remember consideration of simple mechanical machines)

\[W_{\text{in}} = W_{\text{out}} \quad \text{or} \quad W_1 = W_2 \]

\[W_1 = F_1 l_1 = P_1 S_1 l_1 = P_1 V_1 = W_2 = P_2 V_2 \]

From \(V_1 = V_2 \) (incompressibility) follows

\[P_1 = P_2 = P \]
Application of Pascal’s principle

Hydraulic jack

\[F_2 = PS_2 = \frac{F_1}{S_1} S_2 = \frac{S_2}{S_1} F_1 \gg F_1, \quad \text{if} \quad S_2 \gg S_1 \]
Pressure in liquids with gravitation

Weight of the column of liquid is balanced by the pressure on its bottom.

\[mg = \rho V g = \rho h S g = F = PS \]

Thus pressure at the depth \(h \) is

\[P = \rho gh \]

In the presence of the atmospheric pressure \(P_0 \)

\[P = \rho gh + P_0 \]

Note that forces acting on the sides of the column of liquid are horizontal and thus they do not play a role.
Buoyancy and Archimedes’s law

The buoyant force acting on an object immersed in a fluid is equal to the weight of the liquid displaced by the object.

Proof 1
(object of columnar shape)

Buoyant force acts on the bottom only:

\[F_b = PS = \rho ghS = \rho gV = mg \]

(Weight of the displaced fluid)

Proof 2
(general)

Replace immersed part of the object (left) by the fluid separated from the rest of the fluid by an imaginary membrane (right). The pressure forces applied are the same, thus one can use the picture on the right for the calculation of the buoyant force. Since the immersed piece of the fluid is in mechanical equilibrium,

\[F_b = mg \]
Athmospheric pressure and barometer

Torricelli’s experiment: Atmospheric pressure balances the weight of the column of liquid

\[F = mg \quad \Rightarrow \quad P_0 S = \rho h S g \]
\[\Rightarrow \quad P_0 = \rho g h \]

One can thus measure the atmospheric pressure in the units of height

For Hg (mercury)

\[
h = \frac{P_0}{\rho g} = \frac{1.013 \times 10^5 \text{ N/m}^2}{13.6 \times 10^3 \text{ kg/m}^3 \times 9.8 \text{ m/s}^2} = 0.760 \text{ m} = 760 \text{ mm}
\]

For H₂O (water)

\[
h = \frac{P_0}{\rho g} = \frac{1.013 \times 10^5 \text{ N/m}^2}{1 \times 10^3 \text{ kg/m}^3 \times 9.8 \text{ m/s}^2} = 10.34 \text{ m}
\]
Problem: Is the crown gold?

Formulation: When a crown of mass 14.7 kg is submerged in water, a scale reads only 13.4 kg. Is the crown made of gold?

Given: \(m = 14.7 \text{ kg} \) (mass of crown), \(m' = 13.4 \text{ kg} \) (apparent mass of crown submerged)

\(\rho_W = 1 \times 10^3 \text{ kg/m}^3 \) (density of the water), \(\rho_G = 19.3 \times 10^3 \text{ kg/m}^3 \) (density of gold)

To find: \(\rho \) (crown)

Solution: \[m = \rho V \quad (1) \]

\[m'g = mg - F_b = \rho V g - \rho_W V g = (\rho - \rho_W) V g \]

\[\Rightarrow m' = (\rho - \rho_W) V \quad (2) \]

To eliminate unknown volume of the crown \(V \), we divide \((2)/(1) \):

\[\frac{m'}{m} = \frac{\rho - \rho_W}{\rho} = 1 - \frac{\rho_W}{\rho} \quad \Rightarrow \quad \frac{\rho_W}{\rho} = 1 - \frac{m'}{m} \quad \Rightarrow \quad \rho = \frac{1}{1 - m'/m} = \frac{m}{m - m'} \]

Analytical result: \(\rho = \rho_W \frac{m}{m - m'} \)

Plug numbers: \[\rho = 1 \text{ g/cm}^3 \frac{14.7}{14.7 - 13.4} = 11.3 \text{ g/cm}^3 \]

Verdict: This is not gold but lead!
Problem: Water and then oil (which don't mix) are poured into a U-shaped tube, open at both ends. They come to equilibrium as shown in Fig. with $h_O=27.2$ cm and $\Delta h=9.41$ cm. What is the density of the oil ρ_O?

Solution: The pressure at the boundary between the oil and water can be considered as produced by the column of oil and it is

$$P = \rho_O g h_O$$

On the other hand, the same pressure is produced by the column of water of the height $h_W = h_O - \Delta h$ that, according to the Pascal principle, is transmitted from the right to the left vertical pipe. That is,

$$P = \rho_O g h_O = \rho_W g (h_O - \Delta h)$$

From this equation one finds

$$\rho_O = \rho_W \frac{h_O - \Delta h}{h_O} = \rho_W \left(1 - \frac{\Delta h}{h_O}\right)$$

- Final analytical result

Plug numbers:

$$\rho_O = 1 \text{ g/cm}^3 \left(1 - \frac{9.41}{27.2}\right) = 0.654 \text{ g/cm}^3$$
Problem: A 5.25-kg piece of wood (SG=0.50) floats on water. What minimum mass of lead, hung from the wood by a string, will cause it to sink?

Solution: When the system is about to sink, its total weight is balanced by the buoyant force as follows

\[
(m_{\text{Wood}} + m_{\text{Lead}})g = \rho_{\text{Water}}(V_{\text{Wood}} + V_{\text{Lead}})g
\]

or

\[
m_{\text{Wood}} + m_{\text{Lead}} = \rho_{\text{Water}}(V_{\text{Wood}} + V_{\text{Lead}})
\]

Here we find the volumes of wood and lead as:

\[
V_{\text{Wood}} = \frac{m_{\text{Wood}}}{\rho_{\text{Wood}}}, \quad V_{\text{Lead}} = \frac{m_{\text{Lead}}}{\rho_{\text{Lead}}}
\]

Then we obtain

\[
m_{\text{Wood}} + m_{\text{Lead}} = \rho_{\text{Water}}\left(\frac{m_{\text{Wood}}}{\rho_{\text{Wood}}} + \frac{m_{\text{Lead}}}{\rho_{\text{Lead}}}\right) \Rightarrow m_{\text{Lead}}\left(1 - \frac{\rho_{\text{Water}}}{\rho_{\text{Lead}}}\right) = m_{\text{Wood}}\left(\frac{\rho_{\text{Water}}}{\rho_{\text{Wood}}} - 1\right)
\]

Thus the final result is

\[
m_{\text{Lead}} = m_{\text{Wood}} \frac{1}{SG_{\text{Wood}}} - 1 \quad \frac{1}{1 - \frac{1}{SG_{\text{Lead}}}}
\]

Plug numbers:

\[
m_{\text{Lead}} = 5.25 \times 0.5 - 1 = 5.25 \times 1.097 = 5.76 \text{ kg}
\]

Definition:

\[
SG = \frac{\rho}{\rho_{\text{Water}}}
\]
Flow lines, continuity condition

Rate of flow: $Sv = \text{const}$ along the pipe.

Volume of liquid that flows across a cross-section S during the time Δt is $\Delta V = Sv\Delta t$.

The rate of flow is defined as

$$\frac{\Delta V}{\Delta t} = Sv$$
Viscosity

Layers of fluid having different speeds exert friction onto each other that is described in terms of viscosity η.

Laminar and turbulent flows

Laminar – stable in time and space

Turbulent – unstable time and space

The following factors favor turbulence:
High velocities, large spacial dimensions, low viscosity
Bernoulli’s law

For a laminar flow of an incompressible fluid of zero viscosity along the flow lines

\[P + \rho gh + \frac{\rho v^2}{2} = \text{const} \quad (h \text{ – height, not depth}) \]

Bernoulli’s law can be derived from Newton’s second law.

Its meaning: When an element of the fluid is moving from the area with a higher pressure into the area with a lower pressure, applied forces do positive work on it and its kinetic energy increases. An important consequence: In constrictions where the speed of the fluid is higher because of the continuity of the flow, the pressure is lower. Applications: Airplane wing, curveball.
Problem: Estimate the air pressure inside a category 5 hurricane, where the wind speed is 300 km/h

Given: \(v = 300 \text{ km/h}, \rho_{\text{air}} = 1.24 \text{ kg/m}^3 \).

To find: \(P \) (inside the hurricane)

Solution: Assuming that the hurricane is stationary and laminar (that is not perfectly true!) and that far from the hurricane the air speed is zero and the pressure is equal to the atmospheric pressure \(P_0 \), use the Bernoulli equation

\[
P + \frac{\rho v^2}{2} = P_0
\]

And obtain

\[
P = P_0 - \frac{\rho v^2}{2} = 10^5 \text{ N/m}^2 - \frac{1.29 \text{ kg/m}^3 \times (300 \text{ km/h})^2}{2}
\]

\[
= 1.013 \times 10^5 \text{ N/m}^2 - \frac{1.29 \text{ kg/m}^3 \times (300 \times 1000 / 3600 \text{ m/s})^2}{2}
\]

\[
= (1.013 \times 10^5 - 0.45 \times 10^4) \text{ N/m}^2 = 0.968 \times 10^5 \text{ N/m}^2
\]

\[
= 0.968 / 1.013 \text{ atm} = 0.956 \text{ atm} = 726 \text{ mm Hg}
\]