

Eruption of a large volcano on Jupiter's moon

When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space

Material in stream can collide with and stick to surface of asteroid passing through stream
We now consider effect of impact of this material on motion of asteroid

Continuously varying mass

Consider continuous stream of matter moving at velocity \vec{u} which impacts object of mass M that is moving with velocity \vec{v}

This impacting particles stick to object increasing its mass by ΔM during time Δt During time Δt velocity \vec{v} changes by $\Delta \vec{v}$
Applying impulse momentum theorem to this system

$$
\vec{F}_{\text {net }, \text { ext }} \Delta t=\Delta \vec{P}=\vec{P}_{\mathrm{f}}-\vec{P}_{\mathrm{i}}=[(M+\Delta M)(\vec{v}+\Delta \vec{v})]-[M \vec{v}+\Delta M \vec{u}]
$$

Continuously varying mass (cont'd)
Rearranging terms $\vec{F}_{\text {net, ext }} \Delta t=M \Delta \vec{v}+\Delta M(\vec{v}-\vec{u})+\Delta M \Delta \vec{v}$

Dividing by Δt
$\vec{F}_{\text {net }, \text { ext }}=M \frac{\Delta \vec{v}}{\Delta t}+\frac{\Delta M}{\Delta t}(\vec{v}-\vec{u})+\frac{\Delta M}{\Delta t} \Delta \vec{v}$
Taking limit $\Delta t \rightarrow 0$ that also means $\Delta M \rightarrow 0$ and $\Delta \vec{v} \rightarrow 0$

$$
\vec{F}_{\mathrm{net}, \mathrm{ext}}=M \frac{d \vec{v}}{d t}+\frac{d M}{d t}(\vec{v}-\vec{u})
$$

Rearranging terms we obtain Newton's second law for a system that has a continuously changing mass

$$
\begin{gathered}
\vec{F}_{\mathrm{net}, \mathrm{ext}}+\frac{d M}{d t} \vec{v}_{\mathrm{rel}}=M \frac{d \vec{v}}{d t} \\
\vec{v}_{\mathrm{rel}}=\vec{u}-\vec{v}
\end{gathered}
$$

Rocket Propulsion

Momentum conservation works for a rocket as long as we consider rocket and its fuel to be one system and account for mass loss of rocket

Rocket Propulsion

Rocket propulsion is a striking example of conservation of momentum in action
Use Newton's law in form $F_{\text {ext }}=d P / d t$
Consider a rocket moving with speed v relative to earth
If fuel is burned at constant $R=|d m / d t|$
rocket's mass at time t is $m(t)=m_{0}-R t$
Momentum of system at time t is $m P_{\mathrm{i}}=m v$

At a later time $t+\Delta t$ rocket has expelled gas of mass $R \Delta t$ If gas is exhausted at speed $u_{\text {ex }}$ relative to rocket velocity of gas relative to Earth is $v-u_{\text {ex }}$

Rocket then has a mass $m-R \Delta t$ and is moving at speed $v+\Delta v$

Rocket Propulsion

Momentum of system at $t+\Delta t$ is

$$
\begin{aligned}
P_{\mathrm{f}} & =(m-R \Delta t)(v+\Delta v)+R \Delta t\left(v-u_{\mathrm{ex}}\right) \\
& =m v+m \Delta v-v R \Delta t-R \Delta t \Delta v+v R \Delta t-u_{\mathrm{ex}} R \Delta t \\
& \approx m v+m \Delta v-u_{\mathrm{ex}} R \Delta t
\end{aligned}
$$

we dropped term $R \Delta t \Delta v$ which is product of two very small quantities
Change in momentum is

$$
\Delta P=P_{\mathrm{f}}-P_{\mathrm{i}}=m \Delta v-u_{\mathrm{ex}} R \Delta t
$$

and

$$
\frac{\Delta P}{\Delta t}=m \frac{\Delta v}{\Delta t}-u_{\mathrm{ex}} R
$$

As Δt approaches zero $\Delta v / \Delta t$ approaches derivate $d v / d t$ acceleration

Rocket Propulsion

For a rocket moving upward near surface of earth $F_{\text {ext }}=-m g$
Setting $d P / d t=F_{\text {ext }}=-m g$ gives us rocket equation

$$
m \frac{d v}{d t}=R u_{\mathrm{ex}}+F_{\mathrm{ext}}=R u_{\mathrm{ex}}-m g \text { rocket equation }
$$

or

$$
\begin{equation*}
\frac{d v}{d t}=\frac{R u_{\mathrm{ex}}}{m}-g=\frac{R u_{\mathrm{ex}}}{m_{0}-R t}-g \tag{*}
\end{equation*}
$$

Quantity $R u_{\text {ex }}$ is force exerted on rocket by exhausting fuel
This is called thrust

$$
F_{\mathrm{th}}=R u_{\mathrm{ex}}=\left|\frac{d m}{d t}\right| u_{\mathrm{ex}}
$$

Rocket Propulsion

(*) is solved by integrating both sides with respect to time
For a rocket starting at rest at $t=0$ result is

$$
v=-u_{\mathrm{ex}} \ln \left(\frac{m_{0}-R t}{m_{0}}\right)-g t
$$

as can be verified by taking time derivative of v
Payload of a rocket is final mass m_{f} after all fuel has been burned
Burn time t_{b} is given by $m_{\mathrm{f}}=m_{0}-R t_{\mathrm{b}}$ or

$$
t_{\mathrm{b}}=\frac{m_{0}-m_{\mathrm{f}}}{R}
$$

A rocket starting at rest with mass m_{0} and payload of m_{f} attains a final speed

$$
v_{\mathrm{f}}=-u_{\mathrm{ex}} \ln \frac{m_{\mathrm{f}}}{m_{0}}-g t_{\mathrm{b}} \quad \text { final speed of rocket }
$$

assuming acceleration of gravity to be constant

Saturn V: America's Moon Rocket

The Saturn V rocket used in Apollo moon-landing program had:
initial mass $m_{0}=2.85 \times 10^{6} \mathrm{~kg} 73 \%$ of which was fuel
a burn rate $\quad \alpha=13.84 \times 10^{3} \mathrm{~kg} / \mathrm{s}$
and a thrust $\quad F_{\text {th }}=34 \times 10^{6} \mathrm{~N}$
Find (a) the exhaust speed relative to the rocket; (b) the burn time; (c) the acceleration at liftoff (d) the acceleration at just before burnout; (e) the final speed of the rocket

Saturn V: America's Moon Rocket

(a) $\quad F_{\mathrm{th}}=\left|\frac{d m}{d t}\right| u_{\mathrm{ex}} \Rightarrow u_{\mathrm{ex}}=2.46 \mathrm{~km} / \mathrm{s}$
(b) $m_{\mathrm{b}}=0.27 m_{0}=7.70 \times 10^{5} \mathrm{~kg} \quad m_{\text {fuel }}=\alpha t_{\mathrm{b}}$

$$
t_{\mathrm{b}}=\frac{m_{\mathrm{fuel}}}{\alpha}=\frac{m_{0}-m_{\mathrm{b}}}{\alpha}=150 \mathrm{~s}
$$

(c) $\frac{d v_{y}}{d t}=\frac{u_{\mathrm{ex}}}{m_{0}}\left|\frac{d m}{d t}\right|-g=2.14 \mathrm{~m} / \mathrm{s}^{2}$
(d) $\frac{d v_{y}}{d t}=\frac{u_{\mathrm{ex}}}{m_{\mathrm{b}}}\left|\frac{d m}{d t}\right|-g=34.3 \mathrm{~m} / \mathrm{s}^{2}$
(e) $v_{y}=u_{\mathrm{ex}} \ln \left(\frac{m_{0}}{m_{0}-\alpha t}\right)-g t=1.75 \mathrm{~km} / \mathrm{s}$

Rotational Dymamics

Thursday, October 4, 18

Angular Quantities

In purely rotational motion
all points on object move in circles around axis of rotation $-O$
Radius of circle is r
All points on straight line drawn through axis
move through same angle in same time
Angle θ in radians is defined $\theta=\frac{l}{r}$ arc length

Divergence of laser beam

A laser jet is directed at Moon, 380.000 km from Earth
Beam diverges at an angle $\theta=1.4 \times 10^{-5}$
What diameter spot will it make on Moon?

Earth

> Laser beam

Divergence of laser beam

A laser jet is directed at Moon, 380.000 km from Earth
Beam diverges at an angle $\theta=1.4 \times 10^{-5}$
What diameter spot will it make on Moon?

Moon

Angular Quantities (cont'd)

Angular displacement

$$
\Delta \stackrel{\sqrt{l}}{\Delta \theta=\theta_{2}}-\theta_{1}
$$

Average angular velocity is defined as total angular displacement divided by time

$$
\bar{\omega}=\frac{\Delta \theta}{\Delta t}
$$

Instantaneous angular velocity:

$$
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}
$$

Angular Quantities (cont'd)

Angular acceleration is rate at which angular velocity changes with time

$$
\bar{\alpha}=\frac{\omega_{2}-\omega_{1}}{\Delta t}=\frac{\Delta \omega}{\Delta t}
$$

Instantaneous acceleration

$$
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}
$$

Angular Quantities

Every point on a rotating body has an angular velocity ω and a linear velocity v

They are related $v=r \omega$

Angular Quantities (cont'd)

Therefore objects farther from axis of rotation will move faster

Angular Quantities (cont'd)

If angular velocity of a rotating object changes, it has a tangential acceleration

$$
a_{\tan }=r \alpha
$$

Even if angular velocity is constant each point on object

has centripetal acceleration

$$
a_{\mathrm{R}}=\frac{v^{2}}{r}=\frac{(r \omega)^{2}}{r}=\omega^{2} r
$$

Angular Quantities

Here is correspondence between linear and rotational quantities

LINEAR	TYPE	ROTATIONAL	RELATION
x	DISPLACEMENT	θ	$x=r \theta$
v	VELOCITY	ω	$v=r \omega$
$a_{\tan }$	ACCELERATION	α	$a_{\tan }=r \alpha$

Angular Quantities (cont'd)

\checkmark Frequency is number of complete revolutions per second

$$
f=\frac{\omega}{2 \pi}
$$

\checkmark Frequencies are measured in hertz

$$
1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}
$$

\checkmark Period is time one revolution takes

$$
T=\frac{1}{f}
$$

Rotational Kinetic Energy

Kinetic energy of rigid object rotating about fixed axis
is sum of kinetic energy of individual particles that collectively make object
Kinetic energy of the i-th particle $-K=\frac{1}{2} m_{i} v_{i}^{2}$
Summing over all particles using $v_{i}=r_{i} \omega$ gives rotational kinetic energy
$K=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} \sum_{i} m_{i} r_{i}^{2} \omega^{2}=\frac{1}{2} \omega^{2} \sum_{i} m_{i} r_{i}^{2}=\frac{1}{2} I \omega^{2}$
$I=\sum_{i} m_{i} r_{i}^{2}$ moment of inertia for axis of rotation
Object that has both translational and rotational motion also has both translational and rotational kinetic energy

$$
K E=\frac{1}{2} M v_{\mathrm{CM}}^{2}+\frac{1}{2} I_{\mathrm{CM}} \omega^{2}
$$

Moment of Inertia

Quantity $I=\sum m_{\mathrm{i}} r_{\mathrm{i}}^{2}$ is called rotational inertia of an object

Distribution of mass matters here
these two objects have same mass but one on left has a greater rotational inertia as so much of its mass is far from axis of rotation

Integral form - $I=\int r^{2} d m$

Estimating moment of inertia

Estimate moment of inertia of a thin uniform rod of length L and mass M about an axis perpendicular to rod and through one end

Execute this estimation by modeling rod as three point masses each point mass representing $1 / 3$ of rod

Estimating moment of inertia

$$
I=\sum m_{i} r_{i}^{2}=\left(\frac{1}{3} M\right)\left(\frac{1}{6} L\right)^{2}+\left(\frac{1}{3} M\right)\left(\frac{3}{6} L\right)^{2}+\left(\frac{1}{3} M\right)\left(\frac{5}{6} L\right)^{2}=\frac{35}{108} M L^{2}
$$

Moment of inertia of a thin uniform road

Find moment of inertia of a thin uniform rod of length L and mass M about an axis perpendicular to rod and through one end

Moment of inertia of a thin uniform road

$$
\stackrel{\substack{y / \\ \vdots \\ \vdots \\ \vdots}}{\substack{y \\ \vdots}} \mid \quad I=\int r^{2} d m=\int x^{2} d m
$$

$$
I=\int x^{2} d m=\int_{0}^{L} x^{2} \frac{M}{L} d x=\frac{1}{3} M L^{2}
$$

Steiner's Theorem

Parallel-axis theorem relates moment of inertia about an axis through CM to moment of inertia about a second parallel axis

Let I be moment of inertia
Let I_{cm} be moment of inertia about a parallel-axis through center of mass
Let M be total mass of object and h distance between two axes
Parallel axis theorem states that $I=I_{\mathrm{cm}}+M h^{2}$

Steiner's Theorem (cont'd)

Consider object rotating about fixed axis that does not pass through CM Kinetic energy of such a system is

$$
K=\frac{1}{2} \underset{\text { Moment of inertia about fixed axis }}{I \omega^{2}}
$$

Kinetic energy of a system can be written as sum of its translational and rotational kinetic energy relative to its CM

For object that is rotating relative to its $C M$ axis

$$
\text { rotating kinetic energy }=\frac{1}{2} \underbrace{I_{\mathrm{cm}}}_{\text {Moment of inertia about axis through } \mathrm{cm}} \omega^{2}
$$

Total kinetic energy of object is - $K=\frac{1}{2} M v_{\mathrm{cm}}^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega^{2}$

Steiner's Theorem (cont'd)

cm moves along a circular path of radius $h \rightarrow v_{\mathrm{cm}}=h \omega$
Substituting

$$
\frac{1}{2} I \omega^{2}=\frac{1}{2} M h^{2} \omega^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega^{2}
$$

Multiplying through this equation by $2 / \omega^{2}$ leads to

$$
I=M h^{2}+I_{\mathrm{cm}}
$$

Application of Steiner's theorem

A thin uniform rod of mass M and length L on x axis has one end at origin Using parallel-axis theorem, find moment of inertia about y^{\prime} axis, which is parallel to y axis, and through center of rod

Application of Steiner's theorem

$I_{y}=I_{\mathrm{CM}}+M h^{2} \Rightarrow I_{\mathrm{CM}}=I_{y}-M h^{2}=\frac{1}{3} M L^{2}-\frac{1}{4} M L^{2}=\frac{1}{12} M L^{2}$

Torque

To make an object start rotating a force is needed
Position and direction of force matter as well
Perpendicular distance from axis of rotation to line along which force acts is called lever arm

Torque (Cont'd)

Torque is defined as $\quad \tau=r_{\perp} F$

Torque (Cont'd)

Lever arm for F_{A} is distance from knob to hinge
Lever arm for F_{D} is zero
Lever arm for F_{C} is as shown

Rotational Dynamics Torque and Rotational Inertia

Knowing that $F=m a-\tau=m r^{2} \alpha$
This is for a single point mass
What about an extended object?

As angular acceleration is same for whole object we can write

$$
\sum \tau_{\mathrm{i}, \text { net }}=\left(\sum m_{\mathrm{i}} r_{\mathrm{i}}^{2}\right) \alpha
$$

Spinning Cylindrical Satellite

To get a flat, uniform cylindrical satellite spinning at correct rate, engineers fire four tangential rockets as shown in figure

If satellite has a mass of 3600 kg and a radius of 4 m , what is required steady force of each rocket if satellite is to reach 32 rpm in 5 min ?

End view of cylindrical satellite

The ring of rockets will create a torque with zero net force

$$
\begin{gathered}
\tau_{\mathrm{net}}=4 F R \\
\tau_{\mathrm{net}}=I \alpha \\
I=\frac{1}{2} M R^{2}
\end{gathered}
$$

$$
\alpha=\frac{\Delta \omega}{\Delta t}
$$

$$
4 F R=I \alpha=\frac{1}{2} M R^{2} \frac{\Delta \omega}{\Delta t} \Rightarrow F=\frac{1}{8} M R \frac{\Delta \omega}{\Delta t} \approx 20 \mathrm{~N}
$$

