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Eruption of a large volcano on Jupiter’s moon

When volcano erupts speed of effluence exceeds escape speed of Io 
and so a stream of particles is projected into space

Material in stream can collide with and stick to                          
surface of asteroid passing through stream

We now consider effect of impact of this material on motion of asteroid
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Continuously varying mass 

Consider continuous stream of matter moving at velocity                             
which impacts object of mass      that is moving with velocity 

This impacting particles stick to object          
�M during time �t

 During time velocity      changes by
Applying impulse momentum theorem to this system

�t

~u

~v

~v

�~v

~F
net, ext �t = �~P = ~P

f

� P
i

= [(M + �M)(~v + �~v)] � [M~v +�M ~u]

M

increasing its mass by

~Pi
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Continuously varying mass (cont’d)

Dividing by

Rearranging terms

Taking limit that also means and

Rearranging terms we obtain Newton’s second law 
for a system that has a continuously changing mass

~F
net, ext �t = M�~v + �M(~v � ~u) + �M�~v

~F
net, ext �t = M

�~v

�t
+

�M

�t
(~v � ~u) +

�M

�t
�~v

~F
net, ext = M

d~v

dt
+

dM

dt
(~v � ~u)

~F
net, ext +

dM

dt
~v
rel

= M
d~v

dt

~vrel = ~u � ~v

�M ! 0 �~v ! 0�t ! 0

�t
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Rocket Propulsion 

Momentum conservation works for a rocket as long as we consider                  

rocket and its fuel to be one system and account for mass loss of rocket
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Rocket Propulsion

Rocket propulsion is a striking example of conservation of momentum in action

Use Newton’s law in form F
ext

= dP/dt

R = |dm/dt|

v

t

Pi = mv

Consider a rocket moving with speed    relative to earth ☛

If fuel is burned at constant 

rocket’s mass at time    is ☛

Momentum of system at time     is ☛t

At a later time rocket has expelled gas of mass 
If gas is exhausted at speed         relative to rocket 

Rocket then has a mass and is moving at speed 

t + �t R�t

velocity of gas relative to Earth is v � u
ex

u
ex

m � R�t v + �v

m(t) = m0 �Rt
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Rocket Propulsion
Momentum of system at is 

we dropped term

t + �t

P
f

= (m � R�t)(v + �v) + R�t(v � u
ex

)

= mv + m�v � v R�t � R�t�v + v R�t � u
ex

R�t

⇡ mv + m�v � u
ex

R�t

R�t�v

�P = P
f

� P
i

= m�v � u
ex

R�t

which is product of two very small quantities

Change in momentum is

and
�P

�t
= m

�v

�t
� u

ex

R

�t �v/�t dv/dtAs approaches zero approaches derivate ☛ acceleration 
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For a rocket moving upward near surface of earth F
ext

= �mg

Setting dP/dt = F
ext

= �mg gives us rocket equation

m
dv

dt
= Ru

ex

+ F
ext

= Ru
ex

� mg

or
dv

dt
=

Ru
ex

m
� g =

Ru
ex

m
0

� Rt
� g

Quantity is force exerted on rocket by exhausting fuel

This is called thrust

F
th

= Ru
ex

=
���
dm

dt

���u
ex

Ru
ex

rocket equation

Rocket Propulsion

(✴)
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Rocket Propulsion
(✴) is solved by integrating both sides with respect to time
For a rocket starting at rest at result is

v = �u
ex

ln
⇣m

0

� Rt

m
0

⌘
� gt

v
f

= �u
ex

ln
m

f

m
0

� gt
b

tb =
m0 � mf

R

mf = m0 � Rtbtb

mf

mfm0

t = 0

as can be verified by taking time derivative of v
Payload of a rocket is final mass  after all fuel has been burned

Burn time is given by or

A rocket starting at rest with mass and payload of

attains a final speed

assuming acceleration of gravity to be constant

final speed of rocket
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Find (a) the exhaust speed relative to the rocket; (b) the burn time; (c) the acceleration at liftoff   

The Saturn V rocket used in Apollo moon-landing program had:

m0 = 2.85⇥ 106 kg 73% of which was fuel                            
↵ = 13.84⇥ 103 kg/s

and a thrust

a burn rate      
initial mass

Fth = 34⇥ 106 N

(d) the acceleration at just before burnout; (e) the final speed of the rocket

 Saturn V: America’s Moon Rocket
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 Saturn V: America’s Moon Rocket

F
th

=

����
dm

dt

����uex

) u
ex

= 2.46 km/s

mb = 0.27m0 = 7.70⇥ 105 kg mfuel = ↵ tb

tb =
mfuel

↵
=

m0 �mb

↵
= 150 s

dvy
dt

=
u
ex

m
0

����
dm

dt

����� g = 2.14 m/s2

dvy
dt

=
u
ex

m
b

����
dm

dt

����� g = 34.3 m/s2

vy = u
ex

ln

✓
m

0

m
0

� ↵t

◆
� gt = 1.75 km/s

(a)

(b)

(c)

(d)

(e)
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Rotational Dynamics
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Angular Quantities

Radius of circle is r

All points on straight line drawn through axis

Angle       in radians is defined ☛

In purely rotational motion 
all points on object move in circles around axis of rotation ☛

✓

 in same time

O

✓ =
l

r

arc length

move through same angle
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Divergence of laser beam
A laser jet is directed at Moon,
Beam diverges at an angle

What diameter spot will it make on Moon? 
✓ = 1.4 ⇥ 10�5

from Earth380.000 km
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Divergence of laser beam
A laser jet is directed at Moon,
Beam diverges at an angle

What diameter spot will it make on Moon? 
✓ = 1.4 ⇥ 10�5

from Earth380.000 km

✓ =
diameter

rEM
) diameter = ✓rEM = 5.3⇥ 103 m
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Angular Quantities (cont’d)
Angular displacement       

Average angular velocity is defined as total 
angular displacement divided by time

Instantaneous angular velocity:

� ✓ = ✓2 � ✓1

!̄ =
�✓

�t

! = lim
�t! 0

�✓

�t
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Angular acceleration is rate at which angular velocity changes with time

Angular Quantities (cont’d)

Instantaneous acceleration

a = lim
�t! 0

�!

�t
↵

↵̄ =
!2 � !1

�t
=

�!

�t
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Angular Quantities 

Every point on a rotating body has an angular velocity 
and a linear velocity

They are related ☛

v

v = r!

!
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Angular Quantities (cont’d)

Therefore objects farther from axis of rotation will move faster
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Star tracks in a time exposure of night sky 
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Angular Quantities (cont’d)
If angular velocity of a rotating object changes, it has a tangential acceleration

Even if angular velocity is constant each point on object
acceleration

atan = r ↵

aR =
v2

r
=

(r!)2

r
= !2 r

 has centripetal
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Angular Quantities 
Here is correspondence between linear and rotational quantities

LINEAR TYPE ROTATIONAL RELATION

DISPLACEMENT

VELOCITY

ACCELERATION

x

v

atan ↵ atan = r ↵

v = r !

x = r ✓✓

!
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Angular Quantities (cont’d)

✓ Frequency is number of complete revolutions per second

✓ Frequencies are measured in hertz

✓ Period is time one revolution takes

f =
!

2⇡

T =
1

f

1 Hz = 1 s�1
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Rotational Kinetic Energy

Kinetic energy of rigid object rotating about fixed axis
is sum of kinetic energy of individual particles that collectively make object

Object that has both translational and rotational motion

KE =
1

2
Mv2CM +

1

2
ICM !2

also has both translational and rotational kinetic energy

Kinetic energy of the i-th particle ☛ K =
1

2
miv

2
i

Summing over all particles  using                    gives rotational kinetic energy

K =
X

i

1

2
miv

2
i =

1

2

X

i

mir
2
i !

2 =
1

2
!2

X

i

mir
2
i =

1

2
I!2

vi = ri!

I =
X

i

mir
2
i ☛ moment of inertia for axis of rotation
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Moment of Inertia

Quantity                    is called rotational inertia of an object

Distribution of mass matters here                                                                                                                                    

Integral form  ☛

I =
X

mi r
2
i

I =

Z
r2 dm

as so much of its mass is far from axis of rotation
but one on left has a greater rotational inertia        

these two objects have same mass         
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Estimating moment of inertia 

Estimate moment of inertia of a thin uniform rod of length L and mass M 

about an axis perpendicular to rod and through one end

Execute this estimation by modeling rod as three point masses

each point mass representing 1/3 of rod
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Estimating moment of inertia 

I =
X

mir
2
i =

✓
1

3
M

◆✓
1

6
L

◆2

+

✓
1

3
M

◆✓
3

6
L

◆2

+

✓
1

3
M

◆✓
5

6
L

◆2

=
35

108
ML2

27Thursday, October 4, 18



C. B.-Champagne 2

Overview

Luis Anchordoqui

Moment of inertia of a thin uniform road 

Find moment of inertia of a thin uniform rod of length L and mass M             

about an axis perpendicular to rod and through one end
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Moment of inertia of a thin uniform road 

I =

Z
r

2
dm =

Z
x

2
dm

dm = �dx =
M

L

dxdm = �dx =
M

L

dx

I =

Z
x

2
dm =

Z L

0
x

2M

L

dx =
1

3
ML

2
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Steiner’s Theorem

Parallel-axis theorem relates moment of inertia about an axis through CM    

to moment of inertia about a second parallel axis

 Let       be total mass of object and      distance between two axes

Parallel axis theorem states that ☛  

Let     be moment of inertia 

I = Icm + Mh2

Icm be moment of inertia about a 

I

parallel-axis through center of mass

M h

Let       
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Consider object rotating about  fixed axis that does not pass through CM 

Steiner’s Theorem (cont’d)

Kinetic energy of such a system is

Kinetic energy of a system can be written as

For object that is rotating  relative to its CM axis

Moment of inertia about axis through cm

Moment of inertia about fixed axis 

Total kinetic energy of object is  ☛

K =
1

2
I!2

1

2
Icm !2

K =
1

2
Mv2cm +

1

2
Icm !2

sum of its translational and rotational kinetic energy relative to its CM

rotating kinetic energy =
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Steiner’s Theorem (cont’d)

cm moves along a circular path of radius

Substituting 

Multiplying through this equation by 

1

2
I!2 =

1

2
Mh2 !2 +

1

2
Icm !2

I = Mh2 + Icm

h ! vcm = h!

2/!2 leads to
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Application of Steiner’s theorem
A thin uniform rod of mass       and length     on     axis has one end at origin

Using parallel-axis theorem, find moment of inertia about     axis, which is

parallel to      axis, and through center of rod

M L x

y0

y
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Iy = ICM +Mh2 ) ICM = Iy �Mh2 =
1

3
ML2 � 1

4
ML2 =

1

12
ML2

Application of Steiner’s theorem
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Torque

Position and direction of force matter as well

To make an object start rotating a force is needed

Perpendicular distance from axis of rotation                                  
to line along which force acts is called lever arm
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Torque (Cont’d)

Torque is defined as ☛ ⌧ = r? F
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Torque (Cont’d)

Lever arm for         is distance from knob to hinge

Lever arm for         is as shown

Lever arm for         is zero

FA

FD

FC
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Rotational Dynamics ☛ Torque and Rotational Inertia

Knowing that ☛
This is for a single point mass

What about an extended object?

As angular acceleration is same for whole object we can write

F = ma ⌧ = mr2 ↵

X
⌧i, net = (

X
mi r

2
i )↵

~F

mr
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Various Moment of Inertia

Rotational inertia of an object depends 

not only on its mass distribution but 

also location of axis of rotation                   

– compare (f) and (g), for example -
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Spinning Cylindrical Satellite

To get a flat, uniform cylindrical satellite spinning at correct rate, 

engineers fire four tangential rockets as shown in figure 

If satellite has a mass of 3600 kg and a radius of 4 m, what is required 

steady force of each rocket if satellite is to reach 32 rpm in 5 min? 

End view of cylindrical satellite
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The ring of rockets will create a torque with zero net force

⌧net = 4FR

⌧net = I↵

I =
1

2
MR2

↵ =
�!

�t

4FR = I↵ =
1

2
MR2�!

�t
) F =

1

8
MR

�!

�t
⇡ 20 N
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