Rotational Dynamics

Angulars Quansitities

In purely rotational motion, all points on the object move in circles around the axis of rotation ("O").
The radius of the circle is r. All points on a straight line drawn through the axis move through the same angle in the same time. The angle θ in radians is defined:

$$
\theta=\frac{l}{r} \longrightarrow \text { arc length. }
$$

Luis Anchorelogui

A laser jet is directed at the Moon, 380,000 km from Earth. The beam diverges at an angle $\theta=1.4 \times 10^{-5}$

What diameter spot will it make on the Moon?

Earth

Angular Quantities (cont'd)

Angular displacement

The average angular velocity is defined as the total angular displacement divided by time:

$$
\bar{\omega}=\frac{\Delta \Theta}{\Delta t}
$$

The instantaneous angular velocity:

$$
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}
$$

Angular Quantirities (contid)

The angular acceleration is the rate at which the angular velocity changes with time:

$$
\bar{a}=\frac{\omega_{2}-\omega_{1}}{\Delta t}=\frac{\Delta \omega}{\Delta t}
$$

The instantaneous acceleration:

$$
a=\lim _{\Delta t-0} \frac{\Delta \omega}{\Delta t}
$$

A CD Player

A compact disk rotates from rest to $500 \mathrm{rev} / \mathrm{min}$ in 5.5 s .
(a) What is the angular acceleration, assuming that it is constant?
(b) How many revolutions does the disk make in 5.5 s ?
(c) How far does a point on the rim 6 cm from the center of the disk travel during the 5.5. s it takes to get $500 \mathrm{rev} / \mathrm{min}$?

$$
\begin{aligned}
\alpha & =9.51 / \mathrm{s}^{2} \\
\theta-\theta_{0} & =144 \rightarrow 23 \mathrm{rev} \\
\Delta s & =8.7 \mathrm{~m}
\end{aligned}
$$

Angular Quantities (cont'd)

Every point on a rotating body has an angular velocity ω and a linear velocity v.

They are related: $v=r \omega$

Angular Quantities (cont'd)

Angular Quantities (cont'd)

If the angular velocity of a rotating object changes, it has a tangential acceleration:

$$
\overrightarrow{\mathbf{a}}_{\mathrm{tan}}
$$

$$
a_{\tan }=r \alpha
$$

Even if the angulars velocity is
constrant, each point on the object has a centripetal acceleration:

$$
a_{\mathrm{R}}=\frac{v^{2}}{r}=\frac{(r \omega)^{2}}{r}=\omega^{2} r
$$

Angular Quantities (cont'd)

Here is the correspondence between linear and rotational quantities:

Linear	Type	Rotational	Relation
x	Displacement	θ	$x=r \theta$
v	Velocity	ω	$v=r \omega$
$a \tan$	Acceleration	α	$a \tan =r \alpha$

Angular Quantities (cont'd)

The frequency is the number of complete revolutions per second:

$$
f=\frac{w}{2 \pi}
$$

Frequencies are measured in hertz.

$$
1 H z=1 \mathrm{~s}^{-1}
$$

The period is the time one revolution takes:

$$
T=\frac{1}{f}
$$

Constant Angular Acceleration

The equations of motion for constant angular acceleration are the same as those for linear motion, with the substitution of the angular quantities for the linear ones.

Angular
 Linear

$$
\begin{array}{rlrl}
\omega & =\omega_{0}+\alpha t & v & =v_{0}+a t \\
\theta & =\omega_{0} t+\frac{1}{2} \alpha t^{2} & x & =v_{0} t+\frac{1}{2} a t^{2} \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha \theta & v^{2} & =v_{0}^{2}+2 a x \\
\bar{\omega} & =\frac{\omega+\omega_{0}}{2} & \bar{v} & =\frac{v+v_{0}}{2}
\end{array}
$$

Torque

To make an object start rotating, a force is needed The position and direction of the force matter as well.

The perpendicular distance from the axis of rotation to the line along which the force acts is called the lever arm.

Luis Anchordogui

Torque (cont'd)

The torque is defined as:

Luis Anchordogui

Torgue (conit ${ }^{2}$)
The lever armon for F_{A} is the distance from the knob to the hinge; the lever arrins for F_{D} is zero; and the lever armon for F_{C} is as shown.

Biceps torque

The biceps muscle exerts a vertical force on the lower arm bent as shown in the figures.
For each case, calculate the torque about the axis of rotation through the elbow joint, assuming the muscle is attached 5 cm from the elbow.

$\tau_{1}=35 \mathrm{Nm}$ $\zeta=30 \mathrm{Nr}$

Luis Anchordoqui

Rotational Dynamics: Torque and Rotational Inertia

 Knowing that $F=m a$, we see that $\tau=m r^{2} \alpha$ This is for a single point mass. What about an extended object?

As the angular acceleration is the same for the whole object. we can write:

$$
\Sigma \tau_{i, n e t}=\left(\Sigma m_{i} r_{i}^{2}\right) Q \quad \text { Luis Anchordoqui }
$$

Rotational Dynamics: Torque and Rotational Inertia (cont'd)

The quantity $I=\Sigma m_{i} r_{i}^{2}$ is called the rotational inertia of an object.
The distribution of mass matters here - these two objects have the same mass, but the one on the left has a greater rotational inertia, as so much of its mass is far from the axis of rotation.

Estimating the moment of inertia

Estimate the moment of inertia of a thin uniform rod of length L and mass M about an axis perpendicular to the rod and through one end.

Execute this estimation by modelling the rod as three point masses, each point mass representing $1 / 3$ of the rod.

Moment of inertia of a thin uniform road

Find the moment of inertia of a thin uniform rod of length L and mass M about an axis perpendicular to the rod and through one end.

$$
I=\frac{M L^{2}}{3}
$$

Luis Anchordoqui

Calculate the moment of inertia for $\mathrm{H}_{2} \mathrm{O}$ molecule about an axis passing through the center of the oxygen atom
(a) perpendicular to the plane of the molecule
(b) in the plane of the molecule, bisecting the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bonds

$$
\begin{aligned}
& I_{\text {perp }}=3.1 \times 10^{-45} \mathrm{~kg} \mathrm{~m}^{2} \\
& I_{\text {plane }}=1.9 \times 10^{-45} \mathrm{~kg} \mathrm{~m}^{2}
\end{aligned}
$$

To get a flat, uniform cylindrical satellite spinning at the correct rate, engineers fire four tangential rockets as shown in the figure If the satellite has a mass of 3600 kg and a radius of 4 m , what is the required steady force of each rocket if the satellite is to reach 32 rpm in 5 min ?

A helicopter rotor blade can be considered a long thin rod.
(a) If each of the three rotor helicopter blades is 3.75 m long and has a mass of 160 kg . calculate the moment of inertia of the three rotor blades about the axis of rotation.
(b) How much torque must the rotor apply to bring the blades up to a speed of $5 \mathrm{rev} / \mathrm{s}$ in 80 s ?
$I_{\text {total }}=2250 \mathrm{~kg} \mathrm{~m}$
$m=160 \mathrm{~kg}$
τ

Rotational Kinetic Energy

The kinetic energy of a rotating object is given by

$$
N E=\Sigma\left(\frac{1}{2} m_{i} v_{i}^{2}\right)
$$

By substituting the rotational quantities, we find that the rotational kinetic energy can be written:

$$
\text { Rotational } R E=\frac{2}{2} I \omega^{2}
$$

A object that has both translational and rotational motion also has both translational and rotational kinetic energy:

$$
R E=\frac{1}{2} M v_{C M}^{2}+\frac{1}{2} I_{C M} \omega^{2}
$$

A rotating system of particles

An object consists of four point particles, each of mass m, connected by rigid mass less rods to form a rectangle of edge lengths $2 a$ and $2 b$, as shown in the figure.
The system rotates with angular speed ω about an axis in the plane of the figure through the center.

Find the kinetic energy of this object.

$$
k=2 m a^{2} \omega^{2}
$$

A rotating system of particles (cont'd)

Find the moment of inertia of the system for rotation about an axis parallel to the first axis but passing through two of the particles.

$$
I=8 \mathrm{~m} a^{2}
$$

Steiner's Theorem

The parallel-axis theorem relates the moment of inertia about an axis through the center of mass to the moment of inertia about a second parallel axis

Let I be the moment of inertia and let $I_{c m}$ be the moment of inertia about a parallel-axis through the center of mass. Let M be the total mass of the object and h the distance between the two axes. The parallel axis theorem states that

$$
I=I_{c m}+M h^{2}
$$

Steiner's Theorem (cont' d)

Consider an object rotating about a fixed axis that does not pass through the cm The kinetic energy of such a system is

The kinetic energy of a system can be written as the sum of its translational kinetic energy $\left(\frac{1}{2} m v_{c m}^{2}\right)$ and the kinetic energy relative to its cm

For an object that is rotating the kinetic energy relative to its cm is

The total kinetic energy of the object is
$K=\frac{1}{2} \mathcal{N}_{c m}^{2}+\frac{1}{\frac{1}{2}} I_{c m} \omega^{2}$

Steiner's Theorem (cont' d)

The cm moves along a circular path of radius $h \Rightarrow v_{c m}=h \omega$ Substituting

$$
\frac{1}{2} I \omega^{2}=\frac{1}{2} M h^{2} \omega^{2}+\frac{1}{2} I_{c m} \omega^{2}
$$

Multiplying tharough this equation by $2 / \omega^{2}$ leads to

$$
I=M h^{2}+I_{m}
$$

A thin uniform rod of mass M and length L on the x axis has one end at the origin. Using the parallel-axis theorem, find the moment of inertia about the y^{\prime} axis, which is parallel to the y axis, and through the center of the rod.
cm

$$
I_{c m}=\frac{M L^{2}}{12}
$$

The forearm shown in the figure accelerates a 3.6 kg ball at $7 \mathrm{~m} / \mathrm{s}^{2}$ by means of the triceps muscle.

> Calculate
> (a)the torque
(b) the force that must be exerted by the triceps muscle.

$$
\begin{aligned}
& \tau=7.8 \mathrm{Nm} \\
& F=310 \mathrm{~N}
\end{aligned}
$$

Nonslip conditions

For the string not to slip on a pulley wheel the parts of the string and the wheel that are in contact with each other must share the same tangential velocity

Tangential velocity of the string
Differentiating both sides the nonslip condition with respect to time leads to

Tangential acceleration of the string

An Atwood's machine consists of two masses, m_{1} and m_{2} which are connected by a mass less inelastic cord that passes over a pulley. If the pulley has radius R and moment of inertia I about its axle. determine the acceleration of the masses m_{1} and m_{2}.

$$
a=\frac{\left(m_{2}-m_{1}\right)}{\left(m_{1}+m_{2}+I / r^{2}\right)}
$$

Two masses $m_{1}=18 \mathrm{~kg}$ and $m_{2}=26.5 \mathrm{~kg}$ are connected by a rope that hangs over a pulley.
The pulley is a uniform cylinder of radius 0.26 m and mass 7.5 kg . Initially, m_{1} is on the ground and m_{2} rests 3 m above the ground.

If the system is now released, use conservation of energy to determine the speed of m_{2} just before it strikes the ground.
(Assume the pulley is frictionless)

$$
y_{5}=3,22 \mathrm{ss} / \mathrm{s}
$$

Rolling Motion (Without Slipping)

A wheel is rolling without slipping
The point P touching the ground is instantaneously at rest
 and the center moves with velocity v

The same wheel is seen from a reference frame where C is at rest Now point P is moving with velocity $-v$
The linear speed of the wheel is related to its angular speed

$$
v=r \omega
$$

Rolling without slipping

Consider a wheel of radius R rolling without slipping along a flat surface

The cm of the wheel moves with speed $V_{\mathrm{cm}}=R w$
For a point on the very top of the wheel $r=2 R$ so the top of the wheel is moving at twice the speed of the center of the wheel Differentiating on both sides $\quad a_{c m}=R \alpha$

A skateboarder accelerates from rest at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$. How fast will a point on the rim of the wheel (diameter $=75 \mathrm{~mm}$) at the top be moving after 3 s .

$$
v_{\text {top }}=6 \mathrm{~m} / \mathrm{s}
$$

Rolling without slipping (cont' d)

A wheel of radius R is rolling without slipping along a straight path.
As the wheel rotates through an angle \varnothing the point of contact between the wheel and the surface moves a distance s that is related to \varnothing by

$S=R \Theta$

If the wheel is rolling on a flat surface the wheel's CM remains directly over the point of contact so it also moves through a distance RØ

A bowling ball that has 11 cm radius and 7.2 kg mass is rolling without slipping at $2 \mathrm{~m} / \mathrm{s}$ on a horizontal ball return.
It continues to roll without slipping up a hill to a height h before momentarily coming to rest and then rolling back down the hill. Model the ball as a uniform sphere and find h.

$$
h=29 \mathrm{~cm}
$$

A uniform solid ball of mass m and radius R rolls without slipping down a plane inclined at an angle φ above the horizontal.
Find the frictional force and the acceleration of the center of the mass.

$a_{c m}=(5 / 7) g \sin \varphi f_{s}=(2 / 7) m g \sin \varphi$

Rolling with slipping

When an object slips (skids) as it rolls the nonslip condition $v_{c m}=R w$ does not hold Suppose a bowler releases a ball with no initial rotation $\left(\omega_{0}=0\right)$ as the ball skids

The kinetic frictional force will both reduce its linear speed $v_{c m}$ and increase its angular speed w until the nonslip condition $v_{c m}=R w$ is reached, after wich the balls rolls without slipping

A bowling ball of mass M and radius R is released at floor level so that at release it is moving horizontally with speed $v_{0}=5 \mathrm{~m} / \mathrm{s}$ and is not rotating.
The coefficient of kinetic friction between the ball and the floor is $\mu_{k}=0.08$.

Find
(a) the time the ball slides

+ y \quad (b) the distance the ball skids.

$$
\begin{aligned}
& t=1.8 \mathrm{~s} \\
& \Delta x=7.8 \mathrm{~m}
\end{aligned}
$$

f_{k}
-an Luis Anchordogui

Power

Consider a force F acting on a rotating object As the object rotates through an angle d θ the point of application of the force moves a distance $d s=r d \theta$ and the force does work

$$
d W=F_{\dagger} d s=F_{\dagger} r d \theta=\tau d \theta
$$

$$
\boldsymbol{\tau}=\mathrm{Fr} \sin \varnothing=\mathrm{Fl}
$$

The rate at which the torque does work

$$
P=\frac{d W}{d t}=\tau \frac{d \theta}{d t}
$$

The power input of the torque reads

$$
P=r!
$$

