
Rotational Dynamics  
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Angular Quantities 
In purely rotational motion, all points on the object move  

in circles around the axis of rotation (“O ”).                        
The radius of the circle is r. All points on a straight line 

drawn through the axis move through the same angle in the 
same time. The angle θ in radians is defined: 

Θ =  
r
l arc length. 
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A laser jet is directed at the Moon, 380,000 km from Earth.  
The beam diverges at an angle θ =1.4 x 10 -5 

What diameter spot will it make on the Moon?  

3 diameter = 5.3 x 10  m  



Angular displacement        
Angular Quantities (cont’d) 

The instantaneous angular velocity: 

The average angular velocity is defined as the 
total angular displacement divided by time: 

ΔΘ = Θ  - Θ 2 1

ω =   ΔΘ 
Δt 

ω= lim  ΔΘ 
Δt Δt  0 
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The angular acceleration is the rate at which             
the angular velocity changes with time:  

Angular Quantities (cont’d) 

The instantaneous acceleration: 

 
α=             =         

ω   - ω   

Δt 
Δω 
Δt 

2 1 

 
α= lim         

Δt 
Δω 

Δt  0 
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A CD Player  
A compact disk rotates from rest to 500 rev/min in 5.5 s.  

(a) What is the angular acceleration, assuming that it is constant?    
(b) How many revolutions does the disk make in 5.5 s?                 

(c) How far does a point on the rim  6 cm from the center of the disk 
travel during the 5.5. s it takes to get 500 rev/min?  

α = 9.5 1/s²  

θ – θ   = 144   23 rev  0 

Δs = 8.7 m  



Every point on a rotating body has an angular velocity 
ω and a linear velocity v.   

They are related: v = rω 
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Angular Quantities (cont’d) 



Angular Quantities (cont’d) 

Therefore, objects farther from the axis of rotation will move faster. 
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Even if the angular velocity is 
constant, each point on the object 

has a centripetal acceleration: 

Angular Quantities (cont’d) 
If the angular velocity of a rotating object changes,                

it has a tangential acceleration: 
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Here is the correspondence between linear and rotational quantities: 

Angular Quantities (cont’d) 
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Linear  

 
Type  

 
Rotational 

 
Relation  

 
x 

 
Displacement 

 
θ 

 
x = rθ 

 
v 

 
Velocity 

 
ω 

 
v = rω 

 
a 

 
Acceleration 

 
α 

 
a   = rα tan tan 



Angular Quantities (cont’d) 
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The frequency is the number of complete revolutions per second: 

f =  
ω 
2π 

Frequencies are measured in hertz. 

The period is the time one revolution takes: 

1 Hz = 1 s ¯¹ 

T =  
1
f 



Constant Angular Acceleration 
The equations of motion for constant angular acceleration 

are the same as those for linear motion, with the 
substitution of the angular quantities for the linear ones. 
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Angular  Linear  



Torque 
To make an object start rotating, a force is needed                   

The position and direction of the force matter as well. 
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The perpendicular distance from the axis of rotation to the line along 
which the force acts is called the lever arm. 



The torque is defined as: 
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Torque (cont’d) 



The lever arm for FA is the distance from the knob to the hinge; the 
lever arm for FD is zero; and the lever arm for FC is as shown. 
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Torque (cont’d) 
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Biceps torque  
The biceps  muscle exerts a vertical force on the lower arm bent      

as shown in the figures.  
For each case, calculate the torque about the axis of rotation through 
the elbow joint, assuming the muscle is attached 5 cm from the elbow.  

  τ  = 35 N m 
 

τ   = 30 N m 2 

1 



Rotational Dynamics; Torque and Rotational Inertia 

As the angular acceleration is the same for the whole object,  
we can write: 
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Knowing that F = ma, we see that τ = mr²α 
This is for a single point mass.                        

What about an extended object? 

r 
F  
m 

∑τ       = (∑m r²)α i, net ii
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Rotational Dynamics; Torque and Rotational Inertia 

(cont’d) 

The distribution of mass matters here – these two objects have the 
same mass, but the one on the left has a greater rotational inertia, as 

so much of its mass is far from the axis of rotation. 

The quantity I = ∑m  r² is called the rotational inertia of an object. i i

I  = ∫r²dm 
Integral form  



Luis Anchordoqui 

Estimating the moment of inertia  
Estimate the moment of inertia of a thin uniform rod of length L and 
mass M about an axis perpendicular to the rod and through one end.  

Execute this estimation by modelling the rod as three point masses, 
each point mass representing 1/3 of the rod.  

I = 35 M L²/108  
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Moment of inertia of a thin uniform road  
Find the moment of inertia of a thin uniform rod of length L and mass 

M about an axis perpendicular to the rod and through one end.  

I = 
2 ML 

3 
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Calculate the moment of inertia for H O molecule about an 
axis passing through the center of the oxygen atom        
(a) perpendicular to the plane of the molecule               
(b) in the plane of the molecule, bisecting the H-O-H bonds  

2 

I     = 3.1 x 10    kg m²  

I     = 1.9 x 10   kg m²  plane 
-45 

-45 
perp 
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Star tracks in a time exposure of the night sky  
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To get a flat, uniform cylindrical satellite spinning at the correct rate, 
engineers fire four tangential rockets as shown in the figure  

If the satellite has a mass of 3600 kg and a radius of 4 m,         
what is the required steady force of each rocket if the satellite is to 

reach 32 rpm in 5 min?  

End view of cylindrical satellite 

F = 20 N  



The rotational inertia of an object 
depends not only on its mass 

distribution but also the location   
of the axis of rotation                   

– compare (f) and (g), for example. 
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Rotational Dynamics; Torque and Rotational Inertia 

(cont’d) 
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A helicopter rotor blade can be considered a long thin rod.  

(a) If each of the three rotor helicopter blades is 3.75 m long and has 
a mass of 160 kg, calculate the moment of inertia of the three rotor 

blades about the axis of rotation.                                               
(b) How much torque must the rotor apply to bring the blades up to a 

speed of 5 rev/s in 80 s?  

I     = 2250 kg m² total 

τ = 8.8 x 10 N m  
3 



Rotational Kinetic Energy 
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The kinetic energy of a rotating object is given by 

KE = ∑ (½ m  v²) 

By substituting the rotational quantities, we find that the 
rotational kinetic energy can be written: 

Rotational KE = ½ I ω² 

A object that has both translational and rotational motion 
also has both translational and rotational kinetic energy: 

KE = ½Mv²  + ½ I    ω² CM CM 

i i



A rotating system of particles  
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An object consists of four point particles, each of mass m, connected 
by rigid mass less rods to form a rectangle of edge lengths 2a and 2b, 

as shown in the figure.  
The system rotates with angular speed ω about an axis in the plane of 

the figure through the center.  

Find the kinetic energy of this object.  

K = 2 m a² ω²  



A rotating system of particles (cont'd)  
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Find the moment of inertia of the system for rotation about an axis 
parallel to the first axis but passing through two of the particles.  

I = 8 m a²  



Steiner’s Theorem 
The parallel-axis theorem relates the moment of inertia about an axis  

through the center of mass to the moment of inertia about a second parallel axis 

Let I be the moment of inertia and let I       be the moment of inertia about a  
parallel-axis through the center of mass. Let M be the total mass of the object  
and h the distance between the two axes. The parallel axis theorem states that   

I = I    + Mh² cm 

cm 
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Steiner’s Theorem (cont’d) 
Consider an object rotating about a fixed axis that does not pass through the cm  

The kinetic energy of such a system is 

K = ½ Iω² 

Moment of inertia about the fixed axis 

The kinetic energy of a system can be written as the sum of its translational 
kinetic energy (½ mv²   ) and the kinetic energy relative to its cm cm 

For an object that is rotating the kinetic energy relative to its cm is 

½ I    ω² cm 

Moment of inertia about the axis through the cm 

The total kinetic energy of the object is 

K = ½ Mv² + ½ I    ω² cm cm 
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Steiner’s Theorem (cont’d) 

The cm moves along a circular path of radius h    v    = hω cm 
Substituting  

½ Iω²=½ Mh²ω²+½I   ω² cm 
Multiplying through this equation by 2/ω² leads to 

I = Mh² + I    cm 
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A thin uniform rod of mass M and length L on the x axis has one end 
at the origin. Using the parallel-axis theorem, find the moment of 

inertia about the y' axis, which is parallel to the y axis,               
and through the center of the rod.  

I   =  
cm 

ML²  
12 
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The forearm shown in the figure accelerates a 3.6 kg ball at 7 m/s² 
by means of the triceps muscle.  

Calculate  
(a)  the torque   

(b) the force that must be exerted by the triceps muscle.            
Ignore the mass of the arm.  

τ = 7.8 N m  

F = 310 N  
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Nonslip conditions 
For the string not to slip on a pulley wheel the parts of the string and the wheel 

that are in contact with each other must share the same tangential velocity 

v = Rω t

Tangential velocity of the string 

Tangential velocity of the perimeter of the pulley wheel 

Differentiating both sides the nonslip condition with respect to time leads to 

a  = 
Rα 

t 

Tangential acceleration of the string 

 Angular acceleration of the wheel 
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An Atwood's machine consists of two masses, m   and m   which are 
connected by a mass less inelastic cord that passes over a pulley.  

1 2 

If the pulley has radius R and moment of inertia I about its axle, 
determine the acceleration of the masses m  and m  .  1 2 

(m – m ) 12 a = g 
(m + m + I/r²) 1 2 
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Two masses m  = 18 kg and m  = 26.5 kg are connected by a rope 
that hangs over a pulley.  1 

The pulley is a uniform cylinder of radius 0.26 m and mass 7.5 kg. 
Initially, m  is on the ground and m  rests 3 m above the ground.  

2 

1 2 

If the system is now released, use conservation 
of energy to determine the speed of m   just 

before it strikes the ground.  

(Assume the pulley is frictionless)  

2 

v  = 3.22 m/s  f 



Rolling Motion (Without Slipping) 
A wheel is rolling without slipping                                               

The point P touching the ground is instantaneously at rest           
and the center moves with velocity v 

 The same wheel is seen from a reference frame where C is at rest 
Now point P is moving with velocity –v 

The linear speed of the wheel is related to its angular speed 
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v = rω 
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Rolling without slipping 

Consider a wheel of radius R rolling without slipping along a flat surface 

Point P on the wheel moves as shown with speed  
 

v = rω 

the radial distance from the rotation axis to P 

The cm of the wheel moves with speed v   = Rω cm 
For a point on the very top of the wheel r = 2R                                                             

so the top of the wheel   is moving at twice the speed of the center of the wheel 

Differentiating on both sides a    = Rα cm 



A skateboarder accelerates from 
rest at a rate of 1 m/s².       

How fast will a point on the rim 
of the wheel (diameter = 75 mm)   
at the top be moving after 3 s.  
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v     = 6m/s top 
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Rolling without slipping (cont’d) 

A wheel of radius R is rolling without slipping along a straight path. 

As the wheel rotates through an angle Ø  the point of contact between the 
wheel and the surface moves a distance s that is related to Ø by 

s = R Ø 
If the wheel is rolling on a flat surface the wheel’s CM                 

remains directly over the point of contact                                      
so it also moves through a distance RØ 



A bowling ball that has 11 cm radius and 7.2 kg mass is rolling without 
slipping at 2 m/s on a horizontal ball return.                                  

It continues to roll without slipping up a hill to a height h before 
momentarily coming to rest and then rolling back down the hill.           

Model the ball as a uniform sphere and find h.  

h = 29 cm  
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  A uniform solid ball of mass m and radius R rolls without slipping down    
a plane inclined at an angle φ above the horizontal.                          

Find the frictional force and the acceleration of the center of the mass.  

a     = (5/7) g sin φ  cm f = (2/7) m g sin φ  s 
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Rolling with slipping 
When an object slips (skids) as it rolls the nonslip condition v     = R ω  does not hold         

Suppose a bowler releases a ball with no initial rotation (ω   = 0) as the ball skids 

along the bowling lane  v     > Rω 

cm 

0 

cm 

The kinetic frictional force will both reduce its linear speed v                                        
and increase its angular speed ω until the nonslip condition v   = Rω is reached,                                       

after wich the balls rolls without slipping 
cm 

cm 
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A bowling ball of mass M and radius R is released at floor level so that 
at release it is moving horizontally with speed v  = 5 m/s             

and is not rotating.  
0 

The coefficient of kinetic friction between the ball 
and the floor is µ   = 0.08.  k 

Find  
(a) the time the ball slides 

      (b) the distance the ball skids.  

t = 1.8 s  

Δ x = 7.8 m  



Power 
Consider a force F acting on a rotating object 

As the object rotates through an angle dθ the point of application 
of the force moves a distance ds = rdθ and the force does work 

dW = F  ds = F  r dθ = τ dθ 
τ = F r sin ø = Fl 

t t 

The rate at which the torque does work 

P =      = τ  
The power input of the torque reads 
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dW 
dt dt 

dθ 

P = τ ω 


