

## Particle Physics $20 / 1$



Luis Anchordoqui

## Mandelstam Variables

Cross sections and decay rates can be written using kinematic variables that are relativistic invariants For any two particle to two particle process we have at our disposal 4 -momenta associated with each particle invariant variables are scalar products $p_{A}, p_{B}, p_{A}, p_{C}, p_{A} \cdot p_{D}$
conventional to use related (Mandelstam) variables

$$
\begin{aligned}
s & =\left(p_{A}+p_{B}\right)^{2}=\left(p_{C}+p_{D}\right)^{2} \\
t & =\left(p_{A}-p_{C}\right)^{2}=\left(p_{B}-p_{D}\right)^{2} \\
u & =\left(p_{A}-p_{D}\right)^{2}=\left(p_{B}-p_{C}\right)^{2}
\end{aligned}
$$

Because $p_{i}^{2}=m_{i}^{2}$ (with $\left.i=A, B, C, D\right)$ and $p_{A}+p_{B}=p_{C}+p_{D}$ due to energy momentum conservation

$$
\begin{aligned}
s+t+u & =\sum_{i} m_{i}^{2}+2 p_{A}^{2}+2 p_{A} \cdot\left(p_{B}-p_{C}-p_{D}\right) \\
& =\sum_{i} m_{i}^{2}
\end{aligned}
$$

i.e. only two of the three variables are independent

## Crossing

$$
\begin{aligned}
A+B \rightarrow & C+D \\
& s \text {-channel process } \not \approx s \text { wis positive (square cm energy) } \\
& \searrow t, u \text { ware negatives }
\end{aligned}
$$

From this process we can form another process $A \bar{C} \rightarrow \bar{B}+D$

$$
\begin{aligned}
& \text { antiparticle of } C \\
& \text { to left-hand side }
\end{aligned} \quad \text { by taking } \sim \begin{aligned}
& \text { antiparticle of } B \\
& \text { to right-hand side }
\end{aligned}
$$

Antiparticles have momenta which are negatives of particle momenta

$$
p_{B} \rightarrow-p_{B} \& p_{C} \rightarrow-p_{C}
$$

relative to $s$-channel reaction
$s=\left(p_{A}-p_{B}\right)^{2}, t=\left(p_{A}+p_{C}\right)^{2} \not \& u=\left(p_{A}-p_{D}\right)^{2}$
This is called $t$-channel process
$t$ w is positive and represents square cm energy
$s \leq 0 \quad u \leq 0 \quad$ - are square of momentum transfers

## Crossing

From $A+B \rightarrow C+D$ we form another process $A+\bar{D} \rightarrow \bar{B}+C$


$$
s=\left(p_{A}-p_{B}\right)^{2}, t=\left(p_{A}-p_{C}\right)^{2} \& u=\left(p_{A}+p_{D}\right)^{2}
$$

$u$-channel process $\rightarrow$
um is positive (square cm energy of $A \bar{D}$ system)
$s \leq 0$ and $t \leq 0$ - are square of momentum transfers

## EXAMPLE

Amplitude for pair annihilation by crossing amplitude for compton scattering

$$
e^{+} e^{-} \rightarrow \gamma \gamma
$$

$$
e^{-} \gamma \rightarrow e^{-} \gamma
$$



## $s$-channel


$u$-channel


## Leading order conlribulions of some QED processes

Process
$\overline{|\mathfrak{M}|^{2}} / 2 e^{4}$
$\underbrace{\text { Møller scattering }}$

$$
\underbrace{\frac{s^{2}+u^{2}}{t^{2}}}_{\text {forward }}+\underbrace{\frac{2 s^{2}}{t u}}_{\text {interference }}+\underbrace{\frac{s^{2}+t^{2}}{u^{2}}}_{\text {backward }}
$$

(Crossing $s \leftrightarrow u$ )

$$
(u \leftrightarrow t \text { symmetric })
$$

Bhabha scattering

$$
\begin{aligned}
& \underbrace{\frac{s^{2}+u^{2}}{t^{2}}}_{\text {forward }}+\underbrace{\frac{2 u^{2}}{t s}}_{\text {interference }}+\underbrace{\frac{u^{2}+t^{2}}{s^{2}}}_{\text {timelike }} \\
& \underbrace{\frac{s^{2}+u^{2}}{t^{2}}}_{\text {forward }}
\end{aligned}
$$

$$
e^{-} e^{+} \rightarrow \mu^{-} \mu^{+}
$$

$$
\underbrace{\frac{u^{2}+t^{2}}{s^{2}}}_{\text {timelike }}
$$

$$
-\underbrace{\frac{u}{s}}_{\text {timelike }}-\underbrace{\frac{s}{u}}_{\text {backward }}
$$



## Motivation for Feynman Rules

Nonrelativistic perturbation expansion of transition amplitude is

$$
T_{f i}=-i 2 \pi \delta\left(E_{f}-E_{i}\right)\left[\langle f| V|i\rangle+\sum_{n \neq 1}\langle f| V|n\rangle \frac{1}{E_{i}-E_{n}}\langle n| V|i\rangle+\ldots\right]
$$

we have associated factors of $\langle f| V|n\rangle$ with vertices and identified $1 /\left(E_{i}-E_{n}\right)$ as propagator
State vectors are eigenstates of Hamiltonian in absence of $V$

$$
H_{0}|n\rangle=E_{n}|n\rangle
$$

Using completness relation $|n\rangle\langle n|=1$ we rewrite Ul as

$$
T_{f i}=2 \pi \delta\left(E_{f}-E_{i}\right)\langle f|(-i V)+(-i V) \frac{i}{E_{i}-H_{0}}(-i V)+\ldots|i\rangle
$$

Propagator for spinless particles
It is natural to lake $(-i V)$ rather than $V$ as perturbation parameter Vertex factor is $(-i V)$ and propagator
may be regarded as $i$ Limes inverse of Schrodinger operator

$$
-i\left(E_{i}-H_{0}\right) \psi=-i V \psi
$$

$\square$
acting on intermediate scale
We can how apply same technique lo various relativistic wave eggs. co deduce form of propagators for corresponding particles
Form of KLein-Cordon equation corresponding ko $\cdot$ is

$$
i\left(\square^{2}+m^{2}\right) \phi=-i V \phi
$$

$x$

$$
\operatorname{see}-\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=-V \phi
$$

Guided by relativistic generalization of it we expect propagator for spinless particle ko be inverse of operator on lefl-hand side of $x$ For intermediate slate of momentum $p$ this gives

$$
\frac{1}{i\left(-p^{2}+m^{2}\right)}=\frac{i}{p^{2}-m^{2}}
$$

Propagator for spin $-1 / 2$ particles
In a similar fashion, an electron in an electromagnetic field salisfies

$$
\left(\not p-m_{e}\right) \psi=e \gamma^{\mu} A_{\mu} \psi
$$

As before, we must multiply by $-i$
Hence, vertex factor is is -ie $\gamma^{\mu}$
Electron propagator is therefore inverse of $i$ limes left-hand side of $x$

$$
\frac{1}{-i\left(\not p-m_{e}\right)}=\frac{i}{\not p-m_{e}}=\frac{i\left(\not p+m_{e}\right)}{p^{2}-m_{e}^{2}}=\frac{i}{p^{2}-m_{e}^{2}} \sum_{s} u \bar{u}
$$

we have used $\not p p p=p^{2}$ and completeness relation

$$
\begin{aligned}
\left(\Lambda_{+}\right)_{\alpha \beta} & \equiv \frac{1}{2 m} \sum_{r=1}^{2} u_{\alpha}^{(r)}(p) \bar{u}_{\beta}^{(r)}(p) \\
& =\frac{1}{2 m(m+E)}\left[\sum_{r}(\not p+m) u^{(r)}(0) \bar{u}^{(r)}(0)(\not p+m)\right]_{\alpha \beta} \\
& =\frac{1}{2 m(m+E)}\left[(m+\not p) \frac{1+\gamma^{0}}{2}(m+\not p)\right]_{\alpha \beta} \\
& =\frac{1}{2 m(m+E)}\left\{m(\not p+m)+\frac{1}{2}(\not p+m)\left[(m-\not p) \gamma^{0}+2 E\right]\right\}_{\alpha \beta} \\
& =\frac{1}{2 m}(\not p+m)_{\alpha \beta}
\end{aligned}
$$

## SUMMARY

- General form of propagator of virtual particle of mass $m$ is

- Spin sum is completeness relation we include all possible spin states of propagating particle
- Also integrate over different momentum states that propagate
-- for diagrams we have considered so far
this momentum is fixed by momenta of external particles --

Gauge freedom in photon propagator
Propagator for photon is not unique
on account of freedom in choice of $A^{\mu}$
Recall that physics is unchanged
by transformation that is associated with invariance of QED under gauge transformations of wavefunctions of charged particles

$$
\begin{equation*}
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \chi \tag{8}
\end{equation*}
$$

$\chi$ is any function that satisfies

$$
\square^{2} \chi=0
$$

Wave equation for a photon $\epsilon^{\mu \nu \rho \sigma} \partial_{\nu} F_{\rho \sigma}=0, \quad \partial_{\mu} F^{\mu \nu}=e j^{\nu}$ can be written as $\sim\left(g^{\nu \lambda} \square^{2}-\partial^{\nu} \partial^{\lambda}\right) A_{\lambda}=j^{\nu} \quad \therefore$
photon propagator cannot exist until we remove gauge freedom of $A_{\lambda}$

Photon Propagator
So far we worked in Lorentz class of gauges with $\partial_{\lambda} A^{\lambda}=0$ wavefunction $A^{\mu}$ for a free photon satisfies equation

$$
\square^{2} A^{\mu}=0
$$

which has solutions

$$
A^{\mu}=\epsilon^{\mu}(q) e^{-i q \cdot x}
$$

where four vector $\epsilon^{\mu}$ is polarization vector of photon
With this in mind wave equation cs simplifies to $g^{\nu \lambda} \square^{2} A_{\lambda}=j^{\nu}$
since $g_{\mu \nu} g^{\nu \lambda}=\delta_{\mu}^{\lambda}$ propagator is

$$
i \frac{-g_{\mu \nu}}{q^{2}}
$$

(inverse of momentum space operator multiply by $-i$ )

PROPAGATOR OF SPIN-1 PARTICLES
Wave equation for a spin-1 particle of mass $M$ obtained from that for photon by replacement $\quad \square^{2} \rightarrow \square^{2}+M^{2}$ From do we see that wavefunction $B_{\lambda}$ for a free particle satisfies

$$
\left[g^{\nu \lambda}\left(\square^{2}+M^{2}\right)-\partial^{\nu} \partial^{\lambda}\right] B_{\lambda}=0
$$

Proceeding exactly as before
we determine inverse of momentum space operator by solving

$$
\begin{equation*}
\left.\left[g^{\nu \lambda}\left(-p^{2}+M^{2}\right)-p^{\nu} p^{\lambda}\right)\right]^{-1}=\delta_{\lambda}^{\mu}\left(A g_{\mu \nu}+B p_{\mu} p_{\nu}\right) \tag{覀}
\end{equation*}
$$

for $A$ and $B$
Propagator w quantity in brackets on right-hand side of (i) times $i$ is found to be

$$
\frac{i\left(-g^{\mu \nu}+p^{\mu} p^{\nu} / M^{2}\right)}{p^{2}-M^{2}}
$$

Polarization vectors

- Numerator is sum over three spin states of massive particle when taken on-shell $p^{2}=M^{2}$
- We first take divergence $\partial_{\nu}$ of
- Two terms cancel and we find $-M^{2} \partial^{\lambda} B_{\lambda}=0$
- Hence for a massive vector particle we have no choice but to take $\partial^{\lambda} B_{\lambda}=0$
$>$ it is not a gauge condition
- As a consequence wave equation reduces to

$$
\left(\square^{2}+M^{2}\right) B_{\mu}=0
$$

with free particle solutions

$$
B_{\mu}=\epsilon_{\mu} e^{-i p \cdot x}
$$

- condition demands $p^{\mu} . \epsilon_{\mu}=0$ reducing independent polarization vectors from 4 to 3

Photon poarization vectors
Lorentz condition for photons $\partial_{\mu} A^{\mu}=0$ gives $q_{\mu} . \epsilon^{\mu}=0$ reducing number of independent components of $\epsilon^{\mu}$ to 3

We can explore consequences of additional gauge freedom
Choose a gauge parameter

$$
\chi=i a e^{-i q \cdot x}
$$

with $a$ constant so that $Z$ is satisfied
Substituting this together with $\uparrow$ into show that physics is unchanged by replacement

$$
\epsilon_{\mu} \rightarrow \epsilon_{\mu}^{\prime}=\epsilon_{\mu}+a q_{\mu}
$$

Feynmanology
2 polarization vectors $\left(\epsilon_{\mu}, \epsilon_{\mu}^{\prime}\right)$
which differ by a multiple of $q_{\mu}$ describe same photon
Use this freedom to ensure that time component of $\epsilon^{\mu}$ vanishes
$\epsilon^{0} \equiv 0$ and Lorentz condition reduces to $\vec{\epsilon} \cdot \vec{q}=0$
This (noncovariant) choice of gauge is known as Coulomb gauge This means there are only two independent polarization vectors and they are both transverse to three-momentum of photon
e.g. for a photon traveling along $z$-axis we may take

$$
\epsilon_{1}=(1,0,0), \quad \epsilon_{2}=(0,1,0)
$$

A free photon is thus described by its momentum $q$ and a polarization vector $\vec{\epsilon}$
CONCLUSION: we can obtain invariant amplitude $\mathfrak{M}$ by drawing all

Feynman diagrams for process
(topologically distinct and connected)
and assigning multiplicative factors with various elements of each diagram

- External Lines
spin-0 boson (or antiboson)
spin- $\frac{1}{2}$ fermion (in, out)
spin- $\frac{1}{2}$ antifermion (in, out)
spin-1 photon (in, out)
- Internal Lines - Propagators
spin-0 boson
spin- $\frac{1}{2}$ fermion
massive spin-1 boson
massless spin-1 boson
(Feynman gauge)
- Vertex Factors
photon-spin-0 (charge $e$ )
photon-spin- $\frac{1}{2}$ (charge $\left.e\right)$

$$
\epsilon_{\mu}, \epsilon_{\mu}^{*}
$$

$$
\frac{i}{p^{2}-m^{2}}
$$

$$
\frac{i(\nmid+m)}{p^{2}-m^{2}}
$$

$$
\frac{-i\left(g_{\mu \nu}-p_{\mu} p_{\nu} / M^{2}\right)}{p^{2}-M^{2}}
$$

$$
\frac{-i g_{\mu \nu}}{p^{2}}
$$

$$
-i e\left(p+p^{\prime}\right)^{\mu}
$$

$$
-i e \gamma^{\mu}
$$

Loops: $\int d^{4} k /(2 \pi)^{4}$ over loop momentum; include -1 if fermion loop and take trace of associated $\gamma$-matrices
Identical fermions: -1 between diagrams which differ only in $e^{-} \leftrightarrow e^{-}$or initial $e^{-} \leftrightarrow$ final $e^{+}$

Bulk of hadrons produced in $e^{-} e^{+}$annihilations are fragments of $q$ and antiq produced by $e^{-} e^{+} \rightarrow q \bar{q}$ QED cross section for this process is readily obtained from

center-of-mass energy squared is

$$
s=Q^{2} \xlongequal{=} 4 E_{\text {beam }}
$$

Required cross section is $\sigma_{e^{+} e^{-} \rightarrow q \bar{q}}=3 e_{q}^{2} \sigma_{e^{+} e^{-} \rightarrow \mu^{-} \mu^{+}}$
we have taken account of fractional charge of quark $e_{q}$ extra factor of 3 arises because we have diagram for each quark color and cross sections have to be added
To obtain cross section for producing all types of hadrons musk sum over all quark flavors $q=u, d, s, \ldots$ and hence

$$
\begin{aligned}
\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }} & =\sum_{q} \sigma_{e^{+} e^{-} \rightarrow q \bar{q}} \\
& =3 \sum_{q} e_{q}^{2} \sigma_{e^{+} e^{-} \rightarrow \mu^{-} \mu^{+}}
\end{aligned}
$$

That simple calculation leads to dramatic prediction

$$
R \equiv \frac{\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}}{\sigma_{e^{+} e^{-} \rightarrow \mu^{-} \mu^{+}}}=3 \sum_{q} e_{q}^{2}
$$

Because $\sigma_{e^{+} e^{-} \rightarrow \mu^{-} \mu^{+}}$is well known (from last class)
measurement of total $e^{+} e^{-}$annihilation cross section into hadrons directly counts number of quarks, their flavors, and their colors

We have

$$
\begin{aligned}
R & =3\left[\left(\frac{2}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}\right]=2 & & \text { for } u, d, s \\
& =2+3\left(\frac{2}{3}\right)^{2}=\frac{10}{3} & & \text { for } u, d, s, c \\
& =\frac{10}{3}+3\left(\frac{1}{3}\right)^{2}=\frac{11}{3} & & \text { for } u, d, s, c, b
\end{aligned}
$$

## Cross Section


cross section measured al PETRA versus cenker-of-mass energy solid (open) symbols $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\left(e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}\right)$ -- relakiviskic limit of lowest order QED prediction

## $R(Q)$



Predictions compared to $R$ measurements

Value of $R \simeq 2$ apparent below threshold for producing charmed at $Q=2\left(m_{c}+m_{u}\right) \simeq 3.7 \mathrm{GeV}$
Above threshold for all five quark flavors
$\left(Q>2 m_{b} \simeq 10 \mathrm{GeV}\right), R=\frac{11}{3}$ as predicted
These measurements confirm that there are three colors of quark $R=\frac{11}{3}$ would be reduced by a factor of 3 if there was only 1

Results for $R$ will be modified when interpreted in context of QCD
Previous study is based on (leading order) process $e^{+} e^{-} \rightarrow q \bar{q}$
We should also include diagrams where $q$ and/or antiq radiate 9
$R(a l p h a, s)$
In general

$$
R(\alpha, s)=\frac{\sigma_{e^{+} e^{-} \rightarrow q \bar{q}}}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}}
$$

is a function of electromagnetic coupling $\alpha$
$\alpha=\frac{e^{2}}{4 \pi}$
and annihilation energy $s=4 E_{\text {beam }}^{2}$


In ${ }_{3}^{\circ}$ antiparticles are drawn using only particle $\left(e^{-}, \mu^{-}, q\right)$ lines BUT
we omit arrow lines indicating lime direction of ankip 4-momenta Weill adopt this simplified notation

- whenever there is no danger of confusion --


## UV divergences

When annihilation energy far exceeds light masses $m$ of $q$ and $l$ we must expect that for dimensionless observable $R$

$$
R(\alpha, s) \underset{s \gg m^{2}}{\longrightarrow} \text { constant }
$$

as there is no intrinsic scale in theories with massless exchange bosons
This prediction disagrees with experiment
and is not true in renormalizable $Q F T$
Exchange of a massless photon is ultraviolet divergent requiring introduction of a cutoff $\Lambda$
A scale is introduced into calculation a
and dimensionless observable $R\left(\alpha, s, \Lambda^{2}\right)$ is of form $R=R\left(\alpha, \frac{s}{\Lambda^{2}}\right)$
This seems ugly w it is not:
appears order by order in perturbative series bul not in final answer

$$
\text { Therefore } \quad \Lambda^{2} \frac{d R}{d \Lambda^{2}}=0
$$

## Renormalization Group Equation

Renormalization group equation

$$
\Lambda^{2} \frac{d R}{d \Lambda^{2}}=0
$$

can be written more explicitly

$$
\Lambda^{2} \frac{\partial R}{\partial \Lambda^{2}}+\Lambda^{2} \frac{\partial \alpha}{\partial \Lambda^{2}} \frac{\partial R}{\partial \alpha}=0
$$

which exhibits that $R$ can depend on $\Lambda$ directly or via coupling $\alpha$ can be rewritten in variable $t \equiv \ln \left(s / \Lambda^{2}\right)$
Using $\Lambda^{2} \partial /\left(\partial \Lambda^{2}\right)=-\partial /\left[\partial \ln \left(s / \Lambda^{2}\right)\right]$ we obtain

$$
\left(-\frac{\partial}{\partial t}+\beta \frac{\partial}{\partial \alpha}\right) R\left(\alpha(s), \frac{s}{\Lambda^{2}}\right)=0
$$

$$
\beta=\Lambda^{2} \frac{\partial \alpha}{\partial \Lambda^{2}}=\frac{\partial \alpha}{\partial t}
$$

## Beta Function

with identification $\Lambda^{2}=s$ renormalization group equation has very simple solution

$$
R(\alpha(s), 1)
$$

in which observable depends on $s$ only via coupling Because $\alpha(s)$ is dimensionless $w$ dimensional analysis requires

$$
\alpha(s)=F\left(\alpha\left(\Lambda^{2}\right), \frac{s}{\Lambda^{2}}\right)
$$

which is consistent with

$$
\Lambda^{2} \frac{d \alpha(s)}{d \Lambda^{2}}=\left[\frac{\partial F}{\partial z}(\alpha(s), z)\right]_{z=1}=\beta(\alpha)
$$

$$
\beta=\Lambda^{2} \frac{\partial \alpha}{\partial \Lambda^{2}}=\frac{\partial \alpha}{\partial t}
$$

Solution is $t=\ln (s / \Lambda)=\int_{\alpha(\Lambda)}^{\alpha(s)} \frac{d x}{\beta(x)}$

Hints of calculations
replacing

$$
R(\alpha(s), 1)
$$

in

$$
\left(-\frac{\partial}{\partial t}+\beta \frac{\partial}{\partial \alpha}\right) R\left(\alpha(s), \frac{s}{\Lambda^{2}}\right)=0
$$

$$
\left(-\frac{\partial \alpha}{\partial t} \frac{\partial R}{\partial \alpha}+\frac{\partial \alpha}{\partial t} \frac{\partial R}{\partial \alpha}\right)
$$

## Running couplings

Running of coupling is described by $\beta$-function which can be computed perturbatively
In QFT interaction of 2 electrons by exchange of virtual photon is described by a perturbative series

$\Pi\left(q^{2}\right)$ is ultraviolet divergent as $k \rightarrow \infty$ (ask Maddie!!!) explicit calculation confirms this and we therefore write $\Pi\left(q^{2}\right)$ in terms of divergent and finite part

$$
\begin{aligned}
& =e_{0}^{2}-e_{0}^{2} \Pi\left(q^{2}\right)+e_{0}^{2} \Pi^{2}\left(q^{2}\right)-\ldots \\
& \\
& =\frac{e_{0}^{2}}{1+\Pi\left(q^{2}\right)}
\end{aligned}
$$

Note negative sigh associated with fermion loop which is made explicit in 4 to introduce summation

$$
\begin{aligned}
\Pi\left(q^{2}\right) & =\frac{e_{0}^{2}}{12 \pi^{2}} \int_{m_{e}^{2}}^{\Lambda^{2}} \frac{d k^{2}}{k^{2}}-\frac{e_{0}^{2}}{12 \pi^{2}} \ln \frac{-q^{2}}{m_{e}^{2}} \\
& =\frac{e_{0}^{2}}{12 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{-q^{2}}\right)
\end{aligned}
$$

## Renormalizable charge

The trick is to introduce a new charge $e$ which is finite

$$
\begin{aligned}
& e^{2}=e_{0}^{2}\left[1-\Pi\left(-q^{2}=\mu^{2}\right)+\cdots\right] \\
& e=e_{0}\left[1-\frac{1}{2} \Pi\left(-q^{2}=\mu^{2}\right)+\cdots\right] \\
& e
\end{aligned} \text { or }
$$

$e_{0}$ is infinitesimal and combines with divergent loop $\Pi$ to yield finite physical charge $e$

This operation is performed at some reference momentum $\mu$ e.g. $e(\mu=0)$ is Thomson charge with

$$
\alpha=e^{2}(\mu=0) /(4 \pi)=1 / 137.035999679(94)
$$

## Removing UV divergences

To illustrate how this works we calculate $e^{-} e^{-}$scattering Amplitude is (ignoring identical particle effects)

where (7) has been obtained by substituting renormalized charge $e$ for bare charge using oo

$$
\left.\left.\bar{e}_{0}=e\right\}={ }_{\xi}\left[1+\frac{1}{2}\right\}_{a}^{e}+\cdots\right]_{\text {at }-q^{2}=\mu^{2}}
$$

## Removing UV divergences (coned)

In Last term of (3) we can just replace $e_{0}$ by $e$ as additional terms associated with substitution only appear in higher order

Therefore can be rewritten as:

$$
\begin{aligned}
& \frac{\alpha}{3 \pi} \ln \left(\frac{\Lambda^{2}}{-q^{2}}\right)-\frac{\alpha}{3 \pi} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right) \\
& =\frac{\alpha}{3 \pi} \ln \left(\frac{\mu^{2}}{-q^{2}}\right)=\text { finite! }
\end{aligned}
$$

## Hines of calculations

$e^{2}=\frac{e_{0}^{2}}{1+\Pi\left(q^{2}\right)}$

$$
e_{0}^{2}=e^{2}\left(1+\Pi\left(q^{2}\right)\right.
$$

Using Taylor series for $f(x)=\sqrt{1+x}$ around $x=0$

$$
e_{0}=e\left[1+\frac{1}{2} \Pi\left(q^{2}\right)-\frac{1}{8} \Pi^{2}\left(q^{2}\right)+\frac{1}{16} \Pi^{3}\left(q^{3}\right)-\ldots\right]
$$

we get correct sign to remove infinity in loop diagram of photon propagator

$$
\stackrel{e_{0}}{Q^{2}}={ }_{\}}\left[1+\frac{1}{2}\right\}_{\text {at }-q^{2}=\mu^{2}}^{e}
$$

## Running charge

Divergent parts cancel and we obtain a finite result to $O\left(\alpha^{2}\right)$
In a renormalizable theory this cancellation happens at every order of perturbation theory
Price we have paid is introduction of a parameter $\alpha\left(\mu^{2}\right)$ which is fixed by experiment
Electron charge (unfortunately) cannot be calculated
In summary - by using substitution $B$
perturbation series using infinitesimal charges $e_{0}$ and infinite loops $\Pi$ has been reshuffled order by order to obtain finite observables

Running charge can be written as

$$
\alpha=\alpha_{0}\left[1-\Pi\left(q^{2}\right)+\cdots\right]=\frac{\alpha_{0}}{1+\Pi\left(q^{2}\right)}
$$

## QED Beta Function

For QED result

$$
\begin{gathered}
\alpha\left(Q^{2}=-q^{2}\right)=\frac{\alpha_{0}}{1-b \alpha_{0} \ln \frac{Q^{2}}{\Lambda^{2}}} \\
\text { with } b=1 / 3 \pi
\end{gathered}
$$

Ultraviolet cutoff is eliminated
by renormalizing charge to some measured value at $Q^{2}=\mu^{2}$

$$
\begin{equation*}
\frac{1}{\alpha\left(Q^{2}\right)}-\frac{1}{\alpha\left(\mu^{2}\right)}=-b \ln \frac{Q^{2}}{\mu^{2}} \tag{8}
\end{equation*}
$$

One also notices that $b$ determines $\beta$-function to leading order in perturbation theory We obtain indeed from $F$ and $\varepsilon_{3}$ that

$$
\beta(\alpha)=\frac{\partial \alpha\left(Q^{2}\right)}{\partial t}=b \alpha^{2}+\mathcal{O}\left(\alpha^{3}\right)
$$

$b$-values for running of coupling constants
coupling $\alpha \equiv \frac{g^{2}}{4 \pi}$
$b$-value

$\frac{1}{3 \pi}$
$\frac{2 n_{q}-33}{12 \pi}$
$\frac{4 n_{g}+\frac{1}{2} n_{d}-22}{12 \pi}$
$\frac{-\frac{20}{3} n_{g}+\frac{1}{2} n_{d}}{12 \pi}$
$n_{q}:$ number of quarks $(2-6)$
$n_{g}$ : number of generations (3)
$n_{d}:$ number of Higgs doublets (1)

## Charge Screening

From it is clear that much of structure of gauge theory is dictated by identifying momentum dependence of couplings Formal arguments have revealed screening of electric charge

There is physics associated with


In QFT a charge is surrounded by virtual $e^{+} e^{-}$pairs which screen charge more efficiently at large than at small distances Therefore

$$
\alpha^{-1}\left(\mu^{2}=0\right) \simeq 137
$$

is smaller than short-distance value

$$
\alpha^{-1}\left(\mu^{2}=m_{Z}^{2}\right)=127.925 \pm 0.016
$$

We note that qualitatively

$$
\frac{1}{\alpha(0)}-\frac{1}{\alpha\left(m_{Z}^{2}\right)} \simeq 9 \simeq \frac{1}{3 \pi} \ln \left(\frac{m_{Z}^{2}}{m_{e}^{2}}\right)
$$

ASYMPTOTIC FREEDOM
For 3 generations of quarks $b$-value for $Q C D$ is negative
While $q \bar{q}$ pairs screen color charge
just like $e^{+} e^{-}$pairs screen electric charge ( $2 n_{f} / 12 \pi$ term in $b$ ) gluon loops reverse that effect with larger negative $b$-value $\frac{-33}{12 \pi}$ Color charge grows with distance yielding asymptotic freedom!!!
property: $\alpha_{s} \rightarrow 0$ as $Q \rightarrow \infty$
On the other hand w theory becomes strongly coupled at $Q^{2} \sim \Lambda_{\mathrm{QCD}}^{2}$
-- infrared slavery --
presumably leading to confinement of quarks and gluons

## QCD Bela Function <br> $Q^{2} \frac{\partial \alpha_{s}\left(Q^{2}\right)}{\partial Q^{2}}=\beta\left(\alpha_{s}\left(Q^{2}\right)\right.$

PERTURBATIVE EXPANSION OF $\beta$-FUNCTION CALCULATED TO COMPLETE 4-LOOP APPROXIMATION

$$
\begin{aligned}
\beta\left(\alpha_{s}\left(Q^{2}\right)\right)= & -\beta_{0} \alpha_{s}^{2}\left(Q^{2}\right)-\beta_{1} \alpha_{s}^{3}\left(Q^{2}\right) \\
& -\beta_{2} \alpha_{s}^{4}\left(Q^{2}\right)-\beta_{3} \alpha_{s}^{5}\left(Q^{2}\right)+\mathcal{O}\left(\alpha_{s}^{6}\right) \\
\beta_{0}= & \frac{33-2 N_{f}}{12 \pi}, \\
\beta_{1}= & \frac{153-19 N_{f}}{24 \pi^{2}}, \\
\beta_{2}= & \frac{77139-15099 N_{f}+325 N_{f}^{2}}{3456 \pi^{3}}, \\
\beta_{3} & \approx \frac{29243-6946.3 N_{f}+405.089 N_{f}^{2}+1.49931 N_{f}^{3}}{256 \pi^{4}}
\end{aligned}
$$

$N_{f}$ number of active quark flavours at energy scale $Q$

2009 WORLD AVERAGE OF ALPHA-STRONG


## SUMMARY OF MEASUREMENTS OF $\alpha_{s}\left(M_{Z}\right)$



KP do U still think alpha is constant?

Thursday, October 13, 2011

CU next week

Thursday, October 13, 2011

