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Chapter 3 Vectors 
 

Philosophy is written in this grand book, the universe which stands 
continually open to our gaze. But the book cannot be understood unless 
one first learns to comprehend the language and read the letters in which 
it is composed. It is written in the language of mathematics, and its 
characters are triangles, circles and other geometric figures without 
which it is humanly impossible to understand a single word of it; without 
these, one wanders about in a dark labyrinth.1 
 
                 Galileo Galilee  

3.1 Vector Analysis 
 
3.1.1 Introduction to Vectors 
 
Certain physical quantities such as mass or the absolute temperature at some point only 
have magnitude. Numbers alone can represent these quantities, with the appropriate units, 
and they are called scalars. There are, however, other physical quantities that have both 
magnitude and direction: the magnitude can stretch or shrink, and the direction can 
reverse. These quantities can be added in such a way that takes into account both 
direction and magnitude. Force is an example of a quantity that acts in a certain direction 
with some magnitude that we measure in newtons. When two forces act on an object, the 
sum of the forces depends on both the direction and magnitude of the two forces. 
Position, displacement, velocity, acceleration, force, momentum and torque are all 
physical quantities that can be represented mathematically by vectors. We begin by 
defining precisely what we mean by a vector.  
 
3.1.2 Properties of Vectors 
 
A vector is a quantity that has both direction and magnitude. Let a vector be denoted by 
the symbol A


. The magnitude of A


 is | A≡A |


.  We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure 3.1). 
 

 
Figure 3.1 Vectors as arrows. 

                                                
1 Galileo Galilei, The Assayer, tr. Stillman Drake (1957), Discoveries and Opinions of 
Galileo pp. 237-8. 
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There are two defining operations for vectors:   
 
(1) Vector Addition:  
 
Vectors can be added. Let A


 and B


 be two vectors. We define a new vector, = +C A B

  
, 

the “vector addition” of A


 and B


, by a geometric construction. Draw the arrow that 
represents A


. Place the tail of the arrow that represents B


 at the tip of the arrow for A


 

as shown in Figure 3.2a. The arrow that starts at the tail of A


 and goes to the tip of B


 is 
defined to be the “vector addition” = +C A B

  
. There is an equivalent construction for the 

law of vector addition. The vectors A


 and B


 can be drawn with their tails at the same 
point. The two vectors form the sides of a parallelogram. The diagonal of the 
parallelogram corresponds to the vector = +C A B

  
, as shown in Figure 3.2b. 

  
 
Figure 3.2 (a) Geometric sum of vectors. Figure 3.2 (b) Geometric sum of vectors. 
 
Vector addition satisfies the following four properties: 
 
(i) Commutativity:  
 
The order of adding vectors does not matter; 
 
 + = +A B B A

  
. (3.1.1) 

 
Our geometric definition for vector addition satisfies the commutative property (i) since 
in the parallelogram representation for the addition of vectors, it doesn’t matter which 
side you start with, as seen in Figure 3.3. 
 

 
 

Figure 3.3 Commutative property of vector addition. 
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(ii) Associativity:   
 
When adding three vectors, it doesn’t matter which two you start with 
 
 ( ) ( )+ + = + +A B C A B C

    
. (3.1.2) 

 
In Figure 3.4, we add ( )+ +A B C

 
, and ( )+ +A B C

 
 to arrive at the same vector sum in 

either case. 

 
 

Figure 3.4 Associative law. 
 
(iii) Identity Element for Vector Addition:  
 
There is a unique vector, 0


, that acts as an identity element for vector addition. For all 

vectors A


, 
 + = + =A 0 0 A A

    
. (3.1.3) 

 
(iv) Inverse Element for Vector Addition:  
 
For every vector A


, there is a unique inverse vector  

 
 ( 1)− ≡ −A A

 
, (3.1.4) 

such that 

   

A + (−


A) =


0 . 

 
The vector −A


 has the same magnitude as A


, | | | | A= − =A A
 

, but they point in opposite 
directions (Figure 3.5). 

 
Figure 3.5 Additive inverse 
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(2) Scalar Multiplication of Vectors:  
 
Vectors can be multiplied by real numbers. Let A


 be a vector. Let c  be a real positive 

number. Then the multiplication of A


 by c  is a new vector, which we denote by the 
symbol cA


.  The magnitude of cA


 is c  times the magnitude of A


 (Figure 3.6a), 

 
 

   
c

A =c


A . (3.1.5) 

 
Let 0c > , then the direction of cA


 is the same as the direction of A


. However, the 

direction of c− A


 is opposite of A


 (Figure 3.6b). 

 
 

Figure 3.6 Multiplication of vector A


 by (a) 0c > , and (b) 0c− < . 
 
Scalar multiplication of vectors satisfies the following properties: 
 
(i) Associative Law for Scalar Multiplication:  
 
The order of multiplying numbers is doesn’t matter. Let b  and c  be real numbers. Then 
 
 ( ) ( ) ( ) ( )b c bc cb c b= = =A A A A

   
. (3.1.6) 

 
(ii) Distributive Law for Vector Addition:  
 
Vector addition satisfies a distributive law for multiplication by a number. Let  c  be a        
real number. Then 
 ( )c c c+ = +A B A B

  
. (3.1.7) 

 
Figure 3.7 illustrates this property. 
 
(iii) Distributive Law for Scalar Addition:  
 
The multiplication operation also satisfies a distributive law for the addition of numbers. 
Let  b  and  c  be real numbers. Then  
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 ( )b c b c+ = +A A A
  

 (3.1.8) 
 

 
 

Figure 3.7 Distributive Law for vector addition. 
 
Our geometric definition of vector addition satisfies this condition as seen in Figure 3.8. 

 
 

Figure 3.8 Distributive law for scalar multiplication. 
 
(iv) Identity Element for Scalar Multiplication:  
 
The number 1 acts as an identity element for multiplication, 
 
 1 =A A

 
. (3.1.9) 

 
3.2 Cartesian Coordinate System 
 
Physics involve the study of phenomena that we observe in the world. In order to connect 
the phenomena to mathematics we begin by introducing the concept of a coordinate 
system. A coordinate system consists of four basic elements: 
 

(1) Choice of origin 

(2) Choice of axes 

(3) Choice of positive direction for each axis 

(4) Choice of unit vectors for each axis 
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There are three commonly used coordinate systems: Cartesian, cylindrical and spherical. 
What makes these systems extremely useful is the associated set of infinitesimal line, 
area, and volume elements that are key to making many integration calculations in 
classical mechanics, such as finding the center of mass and moment of inertia. 
 
3.2.1 Cartesian Coordinates 
 
Cartesian coordinates consist of a set of mutually perpendicular axes, which intersect at a 
common point, the origin O . We live in a three-dimensional spatial world; for that 
reason, the most common system we will use has three axes, for which we choose the 
directions of the axes and position of the origin are. 
 
(1) Choice of Origin 
 
Choose an originO . If you are given an object, then your choice of origin may coincide 
with a special point in the body. For example, you may choose the mid-point of a straight 
piece of wire.  
 
(2) Choice of Axis 
 
Now we shall choose a set of axes. The simplest set of axes is known as the Cartesian 
axes, x -axis, y -axis, and the z -axis. Once again, we adapt our choices to the physical 
object. For example, we select the x -axis so that the wire lies on the x -axis, as shown in 
Figure 3.9 

 
 

Figure 3.9 A segment of wire of length a  lying along the x -axis of a Cartesian 
coordinate system. 

 
Then each point P  in our space S  can be assigned a triplet of values ( , , )P P Px y z , the 
Cartesian coordinates of the point P .  The ranges of these values are: Px−∞ < < +∞ , 

Py−∞ < < +∞ , Pz−∞ < < +∞ .  
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 The collection of points that have the same the coordinate Py  is called a level 
surface.  For example, the set of points with the same value of Py y=  is  
 
 

  
SyP

= (x, y, z) ∈S such that y = yP{ } . (3.2.1) 

 
This set 

Py
S  is a plane, the  xz -plane (Figure 3.10), called a level set for constant Py . 

Thus, the y -coordinate of any point actually describes a plane of points perpendicular to 
the y -axis. 

 
Figure 3.10 Level surface set for constant value Py . 

 
(3) Choice of Positive Direction 
 
Our third choice is an assignment of positive direction for each coordinate axis. We shall 
denote this choice by the symbol + along the positive axis. Conventionally, Cartesian 
coordinates are drawn with the  yz -plane corresponding to the plane of the paper. The 
horizontal direction from left to right is taken as the positive y -axis, and the vertical 
direction from bottom to top is taken as the positive z -axis. In physics problems we are 
free to choose our axes and positive directions any way that we decide best fits a given 
problem. Problems that are very difficult using the conventional choices may turn out to 
be much easier to solve by making a thoughtful choice of axes. The endpoints of the wire 
now have coordinates ( / 2,0,0)a and ( / 2,0,0)a− . 
 
(4) Choice of Unit Vectors 
 
We now associate to each point P  in space, a set of three unit directions vectors 

   (îP , ĵP ,k̂ P ) .  A unit vector has magnitude one: ˆ 1P =i , ˆ 1P =j , and ˆ 1P =k . We assign 

the direction of ˆPi  to point in the direction of the increasing x -coordinate at the point P . 

We define the directions for ˆPj  and ˆ Pk  in the direction of the increasing y -coordinate 
and z -coordinate respectively, (Figure 3.11). If we choose a different point  S , the units 



 3-8 

vectors    (îS , ĵS ,k̂ S )  at  S , are equal to the unit vectors ˆ ˆ ˆ( , , )P P Pi j k at P . This fact only 
holds true for a Cartesian coordinate system and does not hold for cylindrical coordinates, 
as we shall soon see. We therefore can drop the reference to the point and use   (î, ĵ,k̂) to 
represent the unit vectors in a Cartesian coordinate system. 
 

 
 

Figure 3.11 Choice of unit vectors at points P  and  S . 
 
3.3 Application of Vectors 
 
When we apply vectors to physical quantities it’s nice to keep in the back of our minds 
all these formal properties. However from the physicist’s point of view, we are interested 
in representing physical quantities such as displacement, velocity, acceleration, force, 
impulse, momentum, torque, and angular momentum as vectors. We can’t add force to 
velocity or subtract momentum from torque. We must always understand the physical 
context for the vector quantity. Thus, instead of approaching vectors as formal 
mathematical objects we shall instead consider the following essential properties that 
enable us to represent physical quantities as vectors. 
 
(1) Vectors can exist at any point  P  in space.  
 
(2) Vectors have direction and magnitude. 
 
(3) Vector Equality:  Any two vectors that have the same direction and magnitude are 
equal no matter where in space they are located. 
 
(4) Vector Decomposition: Choose a coordinate system with an origin and axes. We can 
decompose a vector into component vectors along each coordinate axis. In Figure 3.12 
we choose Cartesian coordinates for the -x y  plane (we ignore the z -direction for 
simplicity but we can extend our results when we need to). A vector A


 at  P  can be 

decomposed into the vector sum, 
 x y= +A A A

  
, (3.3.1) 
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where xA


 is the x -component vector pointing in the positive or negative x -direction, 

and yA


 is the y -component vector pointing in the positive or negative y -direction 
(Figure 3.12).  
 

 
 

Figure 3.12 Vector decomposition. 
 
(5) Vector Components:  Once we have defined unit vectors   (î, ĵ,k̂) , we then define the 
x -component and y -component of a vector. Recall our vector decomposition, 

x y= +A A A
  

. We define the x-component vector, xA


, as 
 
 ˆ

x xA=A i


. (3.3.2) 
 
In this expression the term xA , (without the arrow above) is called the x-component of 

the vector A


. The x -component xA  can be positive, zero, or negative. It is not the 

magnitude of xA


 which is given by 2 1/ 2( )xA .  Note the difference between the x -

component, xA , and the x -component vector, xA


. 
 
In a similar fashion we define the y -component, yA , and the z -component, zA , of the 

vector A


 
 ˆ ˆ,y y z zA A= =A j A k

 
. (3.3.3) 

 
A vector A


 can be represented by its three components ( , , )x y zA A A=A


. We can also 

write the vector as  
 ˆ ˆ ˆ

x y zA A A= + +A i j k


. (3.3.4) 
 
In Figure 3.13, we show the vector components ( , , )x y zA A A=A


.  
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Figure 3.13 Component vectors in Cartesian coordinates. 
 
(7) Magnitude: Using the Pythagorean theorem, the magnitude of A


 is, 

 
 2 2 2

x y zA A A A= + + . (3.3.5) 
 
(8) Direction: Let’s consider a vector ( , ,0)x yA A=A


. Since the z -component is zero, the 

vector A


 lies in the -x y  plane. Let θ  denote the angle that the vector A


 makes in the 
counterclockwise direction with the positive x -axis (Figure 3.14). Then the x -
component and y -component are 
 
 

   
Ax = Acos(θ), Ay = Asin(θ) . (3.3.6) 

 

 
 

Figure 3.14 Components of a vector in the  xy -plane. 
 
We now write a vector in the  xy -plane as 
 
 ˆ ˆcos( ) sin( )A Aθ θ= +A i j


 (3.3.7) 

 
Once the components of a vector are known, the tangent of the angle θ  can be 
determined by 
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Ay

Ax

=
Asin(θ)
Acos(θ)

= tan(θ) , (3.3.8) 

 
and hence the angle θ  is given by 

 1tan y

x

A
A

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (3.3.9) 

 
Clearly, the direction of the vector depends on the sign of xA  and yA . For example, if 
both 0xA >  and 0yA > , then 0 / 2θ π< < , and the vector lies in the first quadrant. If, 
however, 0xA >  and 0yA < , then / 2 0π θ− < < , and the vector lies in the fourth 
quadrant. 
 
(9) Unit vector in the direction of A


: Let ˆ ˆ ˆ

x y zA A A= + +A i j k


.  Let   Â  denote a unit 

vector in the direction of A


. Then  
 

 
    
Â =


A

A

=
Ax î + Ay ĵ+ Az k̂

( Ax
2 + Ay

2 + Az
2 )1/ 2 . (3.3.10) 

 
(10) Vector Addition: Let A


 and B


 be two vectors in the x-y plane. Let  Aθ  and Bθ  

denote the angles that the vectors A


 and B


 make (in the counterclockwise direction) 
with the positive  x -axis. Then  
 
     


A = Acos(θA ) î + Asin(θA ) ĵ , (3.3.11) 

     

B = Bcos(θB ) î + Bsin(θB ) ĵ  (3.3.12) 

 
In Figure 3.15, the vector addition = +C A B

  
 is shown. Let Cθ  denote the angle that the 

vector C


 makes with the positive x-axis.  

 
 

Figure 3.15 Vector addition using components. 
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Then the components of C


 are  

 
 ,x x x y y yC A B C A B= + = + . (3.3.13) 
 
In terms of magnitudes and angles, we have  
 

 
  

Cx = C cos(θC ) = Acos(θ A)+ Bcos(θB )

Cy = C sin(θC ) = Asin(θ A)+ Bsin(θB ).
 (3.3.14) 

 
We can write the vector C


 as  

 
 

    

C = ( Ax + Bx ) î + ( Ay + By ) ĵ= C cos(θC ) î +C sin(θC ) ĵ , (3.3.15) 

 
 
Example 3.1 Vector Addition 
 
Given two vectors, ˆ ˆ ˆ2 3 7= + − +A i j k


 and ˆ ˆ ˆ5 2= + +B i j k


, find: (a) A


; (b) B


; (c) 

+A B
 

; (d) −A B
 

; (e) a unit vector   Â  pointing in the direction of A


; (f) a unit vector   B̂  
pointing in the direction of B


. 

 
Solution:  

(a) 
   

A = 22 + (−3)2 + 72( )1/2

= 62 = 7.87 . (b) 
   

B = 52 +12 + 22( )1/2

= 30 = 5.48 . 
 

(c) 

    


A +

B = ( Ax + Bx ) î + ( Ay + By ) ĵ+ ( Az + Bz ) k̂

= (2+5) î + (−3+1) ĵ+ (7 + 2) k̂
= 7 î − 2 ĵ+ 9 k̂.

 

 

(d) 

    


A −

B = ( Ax − Bx ) î + ( Ay − By ) ĵ+ ( Az − Bz ) k̂

= (2−5) î + (−3−1) ĵ+ (7 − 2) k̂
= −3 î − 4 ĵ+ 5 k̂.

 

 
(e) A unit vector   Â  in the direction of A


 can be found by dividing the vector A


 by    the 

magnitude of A


. Therefore 
   

   
Â =

A /

A = 2 î + −3 ĵ+ 7 k̂( ) / 62 . 

 
(f) In a similar fashion, 

   
B̂ =

B /

B = 5î + ĵ+ 2k̂( ) / 30 . 
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Example 3.2 Sinking Sailboat 
 
A Coast Guard ship is located 35 km  away from a checkpoint in a direction   42  north of 
west. A distressed sailboat located in still water 20 km  from the same checkpoint in a 
direction   36  south of east is about to sink. Draw a diagram indicating the position of 
both ships. In what direction and how far must the Coast Guard ship travel to reach the 
sailboat? 
 
Solution: The diagram of the set-up is Figure 3.16. 
 

 
 

Figure 3.16 Example 3.2 

 
 
 

Figure 3.17 Coordinate system for 
sailboat and ship 

 
Choose the checkpoint as the origin, with North as the positive k̂ -direction and East as 
the positive î -direction (see Figure 3.17). The Coast Guard ship is then at an angle 
CG 180 42 138θ = − =   from the checkpoint, and the sailboat is at an angle sb 36θ = −   

from the checkpoint. The position of the Coast Guard ship is then 
 

 
    

rCG = rCG (cosθCG î + sinθCGk̂)

= −26.0km î + 23.4km k̂,
 

  
and the position of the sailboat is 
 

 
    

rsb = rsb (cosθsb î + sinθsbk̂)

= 16.2km î −11.8km k̂.
 

 
Note that an extra significant figure has been kept for the intermediate calculations. The 
position vector from the Coast Guard ship to the sailboat is (Figure 3.18) 
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rsb −
rCG = (16.2km î −11.8km k̂) − (−26.0km î + 23.4km k̂)

= 42.2km î − 35.2km k̂.
 

 
 

Figure 3.18 Relative position vector from ship to sailboat 
 

The rescue ship’s heading would be the inverse tangent of the ratio of the North and East 
components of the relative position, 
 
 ( )1

rescue tan 35.2/42.2 39.8θ −= − = −  , 
 
roughly 40  South of East. 
 
Example 3.3 Vector Description of a Point on a Line 
 
Consider two points located at 1r


 and 2r


, separated by distance 12 1 2r = −r r  . Find a 

vector A


 from the origin to the point on the line between 1r


 and 2r


 at a distance 12xr  
from the point at 1r


, where x  is some number. 

 
Solution: Consider the unit vector pointing from 2r


 to 1r


 given by 

    ̂r12 = (r1 −
r2 ) / r1 −

r2 = (r1 −
r2 ) / r12 . The vector  


α  in Figure 3.19 connects A


 to the point 

at 1r


, therefore we can write     

α = xr12r̂12 = xr12(r1 −

r2 ) / r12 = x(r1 −
r2 ) . The vector 

   
r1 =

A +

α . Therefore     


A = r1 −


α = r1 − x(r1 −

r2 ) = r1(1− x)+ xr2 . 
 

 
Figure 3.19 Vector geometry for Example 3.3 
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Example 3.4 Rotated Coordinate Systems 
 
Consider two Cartesian coordinate systems  S  and  ′S  with the same origin (Figure 3.20). 
Show that if the axes   x ', y '  axes are rotated by an angle θ  relative to the axes   x, y , then 
the corresponding unit vectors are related according to   

ˆ′i = îcosθ + ĵsinθ , and 

  
ˆ′j = ĵcosθ − îsinθ . 
 

 
Figure 3.20 Example 3.4 

 
Solution: This is simple vector decomposition. The components of   ̂ ′i  in the   ̂i  and   ĵ  

direction are given by 
   
′ix = ˆ′i cosθ = cosθ  and 

   
′iy = ˆ′i sinθ = sinθ . Therefore 

 
 

   
ˆ′i = ′ix î + ′iy ĵ= cosθ î + sinθ ĵ . (3.3.16) 

 
A similar argument holds for the components of   

ˆ′j . The components of   
ˆ′j  in the   ̂i  and   ĵ  

direction are given by 
   
′jx = − ˆ′j sinθ = −sinθ  and 

   
′jy = ˆ′j cosθ = cosθ . Therefore 

 
 

   
ˆ′j = ′jx î + ′jy ĵ= −sinθ î + cosθ ĵ . (3.3.17) 

 
 
 
Example 3.5 Vector Description in Rotated Coordinate Systems 
 
With respect to a given Cartesian coordinate system  S , a vector has components   Ax = 5 , 

  
Ay = −3 ,   Az = 0 . (a) What are the components   Ax '  and   

Ay '  of this vector in a second 

coordinate system  ′S  whose   x '  and   y '  axes make angles of   60  with the  x  and  y  axes 
respectively of the first coordinate system  S ? (b) Calculate the magnitude of the vector 
from its  Ax  and  

Ay  components and from its   Ax '  and   
Ay '  components. Does the result 

agree with what you expect? 
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Solution: We begin with a sketch of the rotated coordinate systems and the vector   

A  

(Figure 3.21). 

  
Figure 3.21 Example 3.5 

 
We then take the vector decomposition of   


A  with respect to the  xy -coordinate system, 

 
 

    

A = Ax î + Ay ĵ . (3.3.18) 

 
Now we can use our results from Example 3.5 to solve for the unit vectors   ̂i  and   ĵ  in 
terms of   ̂ ′i  and   

ˆ′j . Multiply Eq. (3.3.16) for   ̂ ′i  by  sinθ  and Eq.(3.3.17) for   
ˆ′j  by  cosθ  

yielding 

  sinθˆ′i = sinθ cosθ î + sin2θ ĵ  

  cosθˆ′j = − sinθ cosθ î + cos2θ ĵ . 
 
Now add these equations, using the identity  sin2θ + cos2θ = 1 yielding 
 

   ĵ = sinθˆ′i + cosθˆ′j . (3.3.19) 
 
Similarly multiply the equation for   ̂ ′i  by  cosθ  and the equation for   

ˆ′j  by  − sinθ  
yielding  

  cosθˆ′i = cos2θ î + cosθsinθ ĵ  

  − sinθˆ′j = sin2θ î − sinθ cosθ ĵ . 
 
Now add these equations, using the identity  sin2θ + cos2θ = 1 
 

  î = cosθˆ′i − sinθˆ′j  (3.3.20) 
Now we can rewrite the vector   


A  as  

 



 3-17 

    


A = Ax î + Ay ĵ= Ax (cosθˆ′i − sinθˆ′j )+ Ay (sinθˆ′i + cosθˆ′j )

= ( Ax cosθ + Ay sinθ )ˆ′i + (−Ax sinθ + Ay cosθ )ˆ′j

= A ′x î + A ′y ĵ,
 

where 
 

  
A ′x = Ax cosθ + Ay sinθ  (3.3.21) 

 
  
A ′y = −Ax sinθ + Ay cosθ . (3.3.22) 

 
We can use the given information that   Ax = 5 ,   

Ay = −3 , and   θ = 60  to solve for the 

components of   

A  in the prime coordinate system 

 

  
A ′x = Ax cosθ + Ay sinθ = 1

2
(5− 3 3) , 

  
A ′y = −Ax sinθ + Ay cosθ = 1

2
(−5 3 − 3) . 

 
c) The magnitude can be calculated in either coordinate system  
 

    

A = ( Ax )2 + ( Ay )2 = (5)2 + (−3)2 = 34  

    


A = ( A ′x )2 + ( A ′y )2 = 1

2
(5− 3 3)

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2

(−5 3 − 3)
⎛
⎝⎜

⎞
⎠⎟

2

= 34 . 

 
This result agrees with what I expect because the length of vector is independent of the 
choice of coordinate system. 
 
Example 3.6 Vector Addition 
 
Two force vectors   


A  and   


B , such that 

   

B = 2


A  have a resultant   


C =

A +

B  of 

magnitude  26.5 N , which makes an angle of   41  with respect to the smaller vector   

A . 

Find the magnitude of each vector and the angle between them. 
 
Solution: We begin by making a sketch of the three vectors, choosing   


A  to point in the 

positive  x -direction (Figure 3.22). 
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Figure 3.22 Choice of coordinates system for Example 3.6 
 
Let’s denote the magnitude of   


C  by 

    
C ≡


C = (Cx )2 + (Cy )2 = 26.5 N . We first note 

that the components of   

C =

A +

B  are given by 

 

   Cx = Ax + Bx = C cosθC = (26.5 N)cos(41) = 20 N  (3.3.23) 

   
Cy = By = C sinθC = (26.5 N)sin(41 ) = 17.39 N . (3.3.24) 

 
Let’s denote the magnitude of   


C  by 

   
C ≡


C . From the condition that 

   

B = 2


A , we 

know that 
 

  
(Bx )2 + (By )2 = 4( Ax )2 . (3.3.25) 

 
Using Eqs. (3.3.23) and (3.3.24), Eq. (3.3.25) becomes 
 

  
(Cx − Ax )2 + (Cy )2 = 4( Ax )2  

  
(Cx )2 − 2Cx Ax + ( Ax )2 + (Cy )2 = 4( Ax )2 . 

 
This is a quadratic equation 

  0 = 3( Ax )2 + 2Cx Ax − C 2  
with solution 
 

  

Ax =
−2Cx ± (2Cx )2 + (4)(3)(C 2 )

6
=
−2(20 N) ± (40 N))2 + (4)(3)(26.5 N)2

6
= 10.0 N,

 

 
where we choose the positive square root because we originally chose   Ax > 0 . Then 
 

  Bx = Cx − Ax = 20.0 N −10.0 N = 10.0 N  

  
By = 17.39 N . 
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Note that the magnitude of 
    

B = (Bx )2 + (By )2 = 20.0 N  is equal to two times the 

magnitude of 
   

A = 10.0 N . The angle between   


A  and   


B  is given by 

 

    
θ = sin−1(By /


B ) = sin−1(17.39 N / 20.0 N) = 60 . 

 
 


