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Chapter 13 Energy, Kinetic Energy, and Work 
 

Acceleration of the expansion of the universe is one of the most exciting 
and significant discoveries in physics, with implications that could 
revolutionize theories of quantum physics, gravitation, and cosmology. 
With its revelation that close to the three-quarters of the energy density of 
the universe, given the name dark energy, is of a new, unknown origin and 
that its exotic gravitational “repulsion” will govern the fate of the 
universe, dark energy and the accelerating universe becomes a topic not 
just of great interest to research physicists but to science students at all 
levels. 1 

         Eric Linder 
 
13.1 The Concept of Energy and Conservation of Energy 
 
The transformation of energy is a powerful concept that enables us to describe a vast 
number of processes: 
 

Falling water releases stored gravitational potential energy, which can become the 
kinetic energy associated with a coherent motion of matter. The harnessed mechanical 
energy can be used to spin turbines and alternators, doing work to generate electrical 
energy, transmitted to consumers along power lines. When you use any electrical 
device, the electrical energy is transformed into other forms of energy. In a 
refrigerator, electrical energy is used to compress a gas into a liquid. During the 
compression, some of the internal energy of the gas is transferred to the random 
motion of molecules in the outside environment. The liquid flows from a high-
pressure region into a low-pressure region where the liquid evaporates. During the 
evaporation, the liquid absorbs energy from the random motion of molecules inside of 
the refrigerator. The gas returns to the compressor.  

 
“Human beings transform the stored chemical energy of food into various forms 
necessary for the maintenance of the functions of the various organ system, tissues 
and cells in the body.”

2
 A person can do work on their surroundings – for example, by 

pedaling a bicycle – and transfer energy to the surroundings in the form of increasing 
random motion of air molecules, by using this catabolic energy. 

 
Burning gasoline in car engines converts chemical energy, stored in the molecular 
bonds of the constituent molecules of gasoline, into coherent (ordered) motion of the 
molecules that constitute a piston. With the use of gearing and tire/road friction, this 
motion is converted into kinetic energy of the car; the automobile moves. 

 
                                                
1  Eric Linder, Resource Letter: Dark Energy and the Accelerating Universe, Am.J.Phys.76: 197-
204, 2008; p. 197. 
2 George B. Benedek and Felix M.H. Villars, Physics with Illustrative Examples from Medicine and 
Biology, Volume 1: Mechanics, Addison-Wesley, Reading, 1973, p. 115-6. 
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Stretching or compressing a spring stores elastic potential energy that can be released 
as kinetic energy. 

 
The process of vision begins with stored atomic energy released as electromagnetic 
radiation (light), which is detected by exciting photoreceptors in the eye, releasing 
chemical energy. 

 
When a proton fuses with deuterium (a hydrogen atom with a neutron and proton for 
a nucleus), helium-three is formed (with a nucleus of two protons and one neutron) 
along with radiant energy in the form of photons. The combined internal energy of 
the proton and deuterium are greater than the internal energy of the helium-three. This 
difference in internal energy is carried away by the photons as light energy. 

 
There are many such processes in the manmade and natural worlds, involving different 
forms of energy: kinetic energy, gravitational energy, thermal energy, elastic energy, 
electrical energy, chemical energy, electromagnetic energy, nuclear energy and more. 
The total energy is always conserved in these processes, although different forms of 
energy are converted into others. 
 
 Any physical process can be characterized by two states, initial and final, between 
which energy transformations can occur. Each form of energy  Ei , where “ i ” is an 
arbitrary label identifying one of the N  forms of energy, may undergo a change during 
this transformation, 
 final, initial,i i iE E EΔ ≡ − . (13.1.1) 
 
Conservation of energy means that the sum of these changes is zero, 
 

 1 2
1

0
N

N i
i

E E E E
=

Δ + Δ + ⋅ ⋅ ⋅+Δ = Δ =∑ . (13.1.2) 

 
 Two important points emerge from this idea. First, we are interested primarily in 
changes in energy and so we search for relations that describe how each form of energy 
changes. Second, we must account for all the ways energy can change. If we observe a 
process, and the sum of the changes in energy is not zero, either our expressions for 
energy are incorrect, or there is a new type of change of energy that we had not 
previously discovered. This is our first example of the importance of conservation laws in 
describing physical processes, as energy is a key quantity conserved in all physical 
processes. If we can quantify the changes of different forms of energy, we have a very 
powerful tool to understand nature. 
 
 We will begin our analysis of conservation of energy by considering processes 
involving only a few forms of changing energy. We will make assumptions that greatly 
simplify our description of these processes. At first we shall only consider processes 
acting on bodies in which the atoms move in a coherent fashion, ignoring processes in 
which energy is transferred into the random motion of atoms. Thus we will initially 
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ignore the effects of friction. We shall then treat processes involving friction between 
rigid bodies. We will later return to processes in which there is an energy transfer 
resulting in an increase or decrease in random motion when we study the First Law of 
Thermodynamics. 
 
 Energy is always conserved but we often prefer to restrict our attention to a set of 
objects that we define to be our system. The rest of the universe acts as the surroundings. 
We illustrate this division of system and surroundings in Figure 13.1. 
 

 
 

Figure 13.1 A diagram of a system and its surroundings with boundary 
 
 Because energy is conserved, any energy that leaves the system must cross 
through the boundary and enter the surroundings. Consider any physical process in which 
energy transformations occur that induces a transition between initial and final states. 
 

When a system and its surroundings undergo a transition from an initial 
state to a final state, the change in energy is zero, 

 
 

  
ΔE = ΔEsystem + ΔEsurroundings = 0 . (13.1.3) 

 
Eq. (13.1.3) is called conservation of energy and is our operating definition for energy. 
We will sometime refer to Eq. (13.1.3) as the energy principle. In any physical 
application, we first identify our system and surroundings, and then attempt to quantify 
changes in energy. In order to do this, we need to identify every type of change of energy 
in every possible physical process. When there is no change in energy in the surroundings 
then the system is called a closed system, and consequently the energy of a closed system 
is constant. 

  
  
ΔEsystem = 0, (closed system) . (13.1.4) 

 
 If we add up all known changes in energy in the system and surroundings and do 
not arrive at a zero sum, we have an open scientific problem. By searching for the 
missing changes in energy, we may uncover some new physical phenomenon. Recently, 
one of the most exciting open problems in cosmology is the apparent acceleration of the 
expansion of the universe, which has been attributed to dark energy that resides in space 
itself, an energy type without a clearly known source.3  
                                                
3 http://www-supernova.lbl.gov/~evlinder/sci.html 
 



 13-5 

13.2 Kinetic Energy 
 
The first form of energy that we will study is an energy associated with the coherent 
motion of molecules that constitute a body of mass  m ; this energy is called the kinetic 
energy (from the Greek “kinetikos,” moving). Let us consider a car moving along a 
straight road (along which we will place the  x -axis). For an observer at rest with respect 
to the ground, the car has velocity ˆ

xv=v i . The speed of the car is the magnitude of the 

velocity, xv v≡ .  
 

The kinetic energy  K  of a non-rotating body of mass  m  moving with speed 
v  is defined to be the positive scalar quantity  
 

 
  
K ≡

1
2

mv2  (13.2.1) 

 
The kinetic energy is proportional to the square of the speed. The SI units for kinetic 
energy are  [kg ⋅m2 ⋅ s−2 ] . This combination of units is defined to be a joule and is denoted 
by [J] , thus  1 J ≡ 1 kg ⋅m2 ⋅ s−2 .  (The SI unit of energy is named for James Prescott 
Joule.) The above definition of kinetic energy does not refer to any direction of motion, 
just the speed of the body.   
 
 Let’s consider a case in which our car changes velocity. For our initial state, the 
car moves with an initial velocity 0 ,0

ˆ
xv=v i  along the  x -axis. For the final state (at some 

later time), the car has changed its velocity and now moves with a final velocity 

,
ˆ

f x fv=v i . Therefore the change in the kinetic energy is  
 

 
  
ΔK =

1
2

mv f
2 −

1
2

mv0
2  (13.2.2) 

 
Example 13.1 Change in Kinetic Energy of a Car 
 
Suppose car A increases its speed from 10 to 20 mph and car B increases its speed from 
50 to 60 mph. Both cars have the same mass  m . (a) What is the ratio of the change of 
kinetic energy of car B to the change of kinetic energy of car A? Which car has a greater 
change in kinetic energy? (b) What is the ratio of the change in kinetic energy of car B to 
car A as seen by an observer moving with the initial velocity of car A?  
 
Solution: (a) The ratio of the change in kinetic energy of car B to car A is 
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ΔKB

ΔK A

=

1
2

m(vB, f )2 − 1
2

m(vB,0 )2

1
2

m(vA, f )2 − 1
2

m(vA,0 )2
=

(vB, f )2 − (vB,0 )2

(vA, f )2 − (vA,0 )2

= (60 mph)2 − (50 mph)2

(20 mph)2 − (10 mph)2 = 11/ 3.

 

 
Thus car B has a much greater increase in its kinetic energy than car A. 
 
(b) Car A now increases its speed from rest to 10 mph and car B increases its speed from 
40 to 50 mph. The ratio is now 
 

  

ΔKB

ΔK A

=

1
2

m(vB, f )2 − 1
2

m(vB,0 )2

1
2

m(vA, f )2 − 1
2

m(vA,0 )2
=

(vB, f )2 − (vB,0 )2

(vA, f )2 − (vA,0 )2

= (50 mph)2 − (40 mph)2

(10 mph)2 = 9.

 

 
The ratio is greater than that found in part a). Note that from the new reference frame 
both car A and car B have smaller increases in kinetic energy. 
 
13.3 Kinematics and Kinetic Energy in One Dimension 
 
13.3.1 Constant Accelerated Motion 
 
Let’s consider a constant accelerated motion of a rigid body in one dimension. We begin 
the discussion by treating our object as a point mass. Suppose at   t = 0  the object has an 
initial  x -component of the velocity given by   

vx ,i . If the acceleration is in the direction of 
the displacement of the body then the body will increase its speed. If the acceleration is 
opposite the direction of the displacement then the acceleration will decrease the body’s 
speed. The displacement of the body is given by 
 

 
  
Δx = vx ,i t +

1
2

ax t2 . (13.3.1) 

 
The product of acceleration and the displacement is 
 

 
  
axΔx = ax (vx ,i t +

1
2

ax t2 ) . (13.3.2) 

The acceleration is given by  
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ax =

Δvx

Δt
=

(vx , f − vx ,i )
t

. (13.3.3) 

Therefore  

 
  
axΔx =

(vx , f − vx ,i )
t

vx ,i t + 1
2

(vx , f − vx ,i )
t

t2
⎛

⎝
⎜

⎞

⎠
⎟ .  (13.3.4) 

 
Equation (13.3.4) becomes 
 

 
  
axΔx = (vx , f − vx ,i )(vx ,i ) +

1
2

(vx , f − vx ,i )(vx , f − vx ,i ) =
1
2

vx , f
2 −

1
2

vx ,i
2 . (13.3.5) 

 
If we multiply each side of Equation (13.3.5) by the mass  m  of the object this 
kinematical result takes on an interesting interpretation for the motion of the object. We 
have 

 
  
maxΔx =

1
2

mvx , f
2 − m

1
2

vx ,i
2 = K f − Ki . (13.3.6) 

 
Recall that for one-dimensional motion, Newton’s Second Law is  Fx = max , for the 
motion considered here, Equation (13.3.6) becomes 
 
 x f iF x K KΔ = − . (13.3.7) 
 
13.3.2 Non-constant Accelerated Motion 
 
If the acceleration is not constant, then we can divide the displacement into  N  intervals 
indexed by   j = 1 to N .  It will be convenient to denote the displacement intervals by 

 
Δx j , 

the corresponding time intervals by jtΔ  and the  x -components of the velocities at the 
beginning and end of each interval as , 1x jv −  and ,x jv .  Note that the  x -component of the 

velocity at the beginning and end of the first interval 1j =  ,is then   
vx ,1 = vx ,i  and the 

velocity at the end of the last interval, j N=  is , ,x N x jv v= . Consider the sum of the 

products of the average acceleration ,( )x j avea  and displacement 
 
Δx j  in each interval, 

 

 
  

(ax , j )aveΔx j
j=1

j=N

∑ . (13.3.8) 

 
The average acceleration over each interval is equal to 
 

 
  
(ax , j )ave =

Δvx , j

Δt j

=
(vx , j+1 − vx , j )

Δt j

, (13.3.9) 
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and so the contribution in each integral can be calculated as above and we have that 
 

 
  
(ax , j )ave Δx j =

1
2

vx , j
2 − 1

2
vx , j−1

2 . (13.3.10) 

 
When we sum over all the terms only the last and first terms survive, all the other terms 
cancel in pairs, and we have that  
 

 
  

(ax , j )ave Δx j
j=1

j=N

∑ = 1
2

vx , f
2 − 1

2
vx ,i

2 2 . (13.3.11) 

 
In the limit as N →∞  and 0jxΔ →  for all j  (both conditions must be met!), the limit of 
the sum is the definition of the definite integral of the acceleration with respect to the 
position,  

 

  

lim
N→∞
Δx j→0

(ax , j )ave Δx j
j=1

j=N

∑ ≡ ax ( x)dx
x=xi

x=x f

∫ . (13.3.12) 

 
Therefore In the limit as N →∞  and 0jxΔ →  for all j , with   

vx ,N → vx , f , Eq. (13.3.11) 
becomes  

 
  

ax ( x)dx
x=xi

x=x f

∫ = 1
2

(vx , f
2 − vx ,i

2 )  (13.3.13) 

 
This integral result is consequence of the definition that   ax ≡ dvx / dt . Notice how Eq. 
(13.3.13) compares to the integral of acceleration with respect to time 
 

 
  

ax (t) dt
t= ti

t= t f

∫ = vx , f − vx ,i . (13.3.14) 

 
Multiplying both sides of Eq. (13.3.13) by the mass m  yields 
 

 
  

max ( x)dx
x=xi

x=x f

∫ = 1
2

m(vx , f
2 − vx ,i

2 ) = K f − Ki . (13.3.15) 

 
When we introduce Newton’s Second Law in the form  Fx = max , then Eq. (13.3.15) 
becomes 

 
  

Fx (x) dx
x= xi

x= x f

∫ = K f − Ki .  (13.3.16) 
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The integral of the x -component of the force with respect to displacement in Eq.  
(13.3.16) applies to the motion of a point-like object. For extended bodies, Eq. (13.3.16)
applies to the center of mass motion because the external force on a rigid body causes the 
center of mass to accelerate. 
 
13.4 Work done by Constant Forces 
 
We will begin our discussion of the concept of work by analyzing the motion of an object 
in one dimension acted on by constant forces. Let’s consider an example of this type of 
motion: pushing a cup forward with a constant force along a desktop. When the cup 
changes speed (and hence kinetic energy), the sum of the forces acting on the cup must 
be non-zero according to Newton’s Second Law. There are three forces involved in this 
motion: the applied pushing force    


Fa ; the contact force k≡ +C N f

 
; and gravity    


Fg = mg . 

The force diagram on the cup is shown in Figure 13.2. 

 
 

Figure 13.2 Force diagram for cup. 
 
Let’s choose our coordinate system so that the x+ -direction is the direction of the 
forward motion of the cup. The pushing force can then be described by 
 
     


Fa = Fx

a î . (13.4.1) 
 

Suppose a body moves from an initial point   x0  to a final point 
 
x f  so that the 

displacement of the point the force acts on is positive   
Δx ≡ x f − x0 > 0 . The work 

done by a constant force     

Fa = Fx

a î  acting on the body is the product of the 

component of the force  Fx
a  and the displacement xΔ , 

 
  W

a = Fx
aΔx . (13.4.2) 

 
Work is a scalar quantity; it is not a vector quantity. The SI unit for work is  
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 -2 2 -2[1 N m] [1kg m s ][1m] [1kg m s ] [1 J]⋅ = ⋅ ⋅ = ⋅ ⋅ = . (13.4.3) 
 
Note that work has the same dimension and the same SI unit as kinetic energy. Because 
our applied force is along the direction of motion, both   Fx

a > 0  and 0xΔ > . The work 
done is just the product of the magnitude of the applied force and the distance through 
which that force acts and is positive. In the definition of work done by a force, the force 
can act at any point on the body. The displacement that appears in Equation (13.4.2) is 
not the displacement of the body but the displacement of the point of application of the 
force. For point-like objects, the displacement of the point of application of the force is 
equal to the displacement of the body. However for an extended body, we need to focus 
on where the force acts and whether or not that point of application undergoes any 
displacement in the direction of the force as the following example illustrates. 
 
Example 13.2 Work Done by Static Fiction 
 
Suppose you are initially standing and you start walking by pushing against the ground 
with your feet and your feet do not slip. How much work does the static frictional force 
do on you? 
 
Solution: When you apply a contact force against the ground, the ground applies an 
equal and opposite contact force on you. The tangential component of this constant force 
is the force of static friction acting on you. Since your foot is at rest while you are 
pushing against the ground, there is no displacement of the point of application of this 
static frictional force. Therefore static friction does zero work on you while you are 
accelerating. You may be surprised by this result but if you think about energy 
transformation, chemical energy stored in your muscle cells is being transformed into 
kinetic energy of motion and thermal energy.  
 
 
 We can extend the concept of work to forces that oppose the motion, like friction. 
In our example of the moving cup, the kinetic frictional force is 
 
     


F f = fx î = −µk N î = −µkmg î , (13.4.4) 

 
where N mg=  from consideration of the ĵ -components of force in Figure 13.2 and the 
model k kf Nµ=  for kinetic friction have been used. 
 
Here the component of the force is in the opposite direction as the displacement. The 
work done by the frictional force is negative, 
 
  W

f = −µkmgΔx . (13.4.5) 
 
 Since the gravitation force is perpendicular to the motion of the cup, the 
gravitational force has no component along the line of motion. Therefore the gravitation 
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force does zero work on the cup when the cup is slid forward in the horizontal direction.  
The normal force is also perpendicular to the motion, and hence does no work.  
 
 We see that the pushing force does positive work, the frictional force does 
negative work, and the gravitation and normal force does zero work. 
 
 
Example 13.3 Work Done by Force Applied in the Direction of Displacement 
 
Push a cup of mass 0.2 kg along a horizontal table with a force of magnitude 2.0 N for a 
distance of 0.5 m. The coefficient of friction between the table and the cup is   µk = 0.10 . 
Calculate the work done by the pushing force and the work done by the frictional force.  
 
Solution: The work done by the pushing force is 
 
   W

a = Fx
aΔx = (2.0 N)(0.5 m) = 1.0 J . (13.4.6) 

 
The work done by the frictional force is  
 
   W

f = −µkmgΔx = −(0.1)(0.2 kg)(9.8 m ⋅s-2 )(0.5 m)= − 0.10 J . (13.4.7) 
 
 
Example 13.4 Work Done by Force Applied at an Angle to the Direction of 
Displacement 
 
Suppose we push the cup in the previous example with a force of the same magnitude but 
at an angle   θ = 30o  upwards with respect to the table. Calculate the work done by the 
pushing force. Calculate the work done by the kinetic frictional force.  
 
Solution: The force diagram on the cup and coordinate system is shown in Figure 13.3. 

 
 

Figure 13.3 Force diagram on cup. 
 
The  x -component of the pushing force is now 
 



 13-12 

    Fx
a = F a cos(θ ) = (2.0 N)(cos(30)) = 1.7 N . (13.4.8) 

 
The work done by the pushing force is 
 
   W

a = Fx
aΔx = (1.7 N)(0.5 m) = 8.7 ×10−1 J . (13.4.9) 

 
The kinetic frictional force is  
     


F f = −µk N î . (13.4.10) 

 
In this case, the magnitude of the normal force is not simply the same as the weight of the 
cup. We need to find the  y -component of the applied force, 
 
 

  
Fy

a = F a sin(θ ) = (2.0 N)(sin(30o ) = 1.0 N . (13.4.11) 
 
To find the normal force, we apply Newton’s Second Law in the  y -direction, 
 
 

  
Fy

a + N − mg = 0 . (13.4.12) 
Then the normal force is 
 
 

  
N = mg − Fy

a = (0.2 kg)(9.8 m ⋅s−2 )− (1.0 N) = 9.6×10−1 N . (13.4.13) 
 
The work done by the kinetic frictional force is  
 
   W

f = −µk NΔx = −(0.1)(9.6×10−1 N)(0.5 m) = 4.8×10−2 J . (13.4.14) 
 
 
 
Example 13.5 Work done by Gravity Near the Surface of the Earth 
 
Consider a point-like body of mass m  near the surface of the earth falling directly 
towards the center of the earth. The gravitation force between the body and the earth is 
nearly constant, grav m=F g

  . Let’s choose a coordinate system with the origin at the 
surface of the earth and the y+ -direction pointing away from the center of the earth 
Suppose the body starts from an initial point   y0  and falls to a final point  

y f  closer to the 
earth. How much work does the gravitation force do on the body as it falls? 
 
Solution: The displacement of the body is negative,   

Δy ≡ y f − y0 < 0 . The gravitation 
force is given by 
 

    

Fg = mg = Fy

g ĵ= −mg ĵ . (13.4.15) 
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The work done on the body is then 
 
  

W g = Fy
gΔy = −mgΔy . (13.4.16) 

 
For a falling body, the displacement of the body is negative,   

Δy ≡ y f − y0 < 0 ; therefore 

the work done by gravity is positive,   W g > 0 . The gravitation force is pointing in the 
same direction as the displacement of the falling object so the work should be positive. 
 
When an object is rising while under the influence of a gravitation force, 

  
Δy ≡ y f − y0 > 0 . The work done by the gravitation force for a rising body is negative, 

  W g < 0 , because the gravitation force is pointing in the opposite direction from that in 
which the object is displaced. 
 
It’s important to note that the choice of the positive direction as being away from the 
center of the earth (“up”) does not make a difference.  If the downward direction were 
chosen positive, the falling body would have a positive displacement and the 
gravitational force as given in Equation (13.4.15) would have a positive downward 
component; the product  

Fy
gΔy  would still be positive. 

 
13.5 Work done by Non-Constant Forces 
 
Consider a body moving in the  x -direction under the influence of a non-constant force in 
the  x -direction,    


F = Fx î . The body moves from an initial position  x0  to a final position 

 
x f . In order to calculate the work done by a non-constant force, we will divide up the 
displacement of the point of application of the force into a large number N  of small 
displacements jxΔ  where the index j  marks the thj  displacement and takes integer 
values from 1  to N .  Let ,( )x j aveF  denote the average value of the  x -component of the 

force in the displacement interval 1[ , ]j jx x− . For the thj  displacement interval we 
calculate the contribution to the work  
 
   

ΔWj = (Fx , j )aveΔx j  (13.5.1) 
 
This contribution is a scalar so we add up these scalar quantities to get the total work 
 

 
  
WN = ΔWj

j=1

j=N

∑ = (Fx , j )aveΔx j
j=1

j=N

∑ . (13.5.2) 
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The sum in Equation (13.5.2) depends on the number of divisions N  and the width of the 
intervals jxΔ . In order to define a quantity that is independent of the divisions, we take 

the limit as N →∞  and 0jxΔ →  for all j . The work is then 
 

 

  

W = lim
N→∞
Δx j →0

(Fx , j )aveΔx j
j=1

j=N

∑ = Fx (x)dx
x=xi

x=x f

∫  (13.5.3) 

 
This last expression is the definition of the definite integral of the  x -component of the 
force with respect to the parameter  x . In Figure 13.5 we graph the  x -component of the 
force as a function of the parameter  x . The work integral is the area under this curve 
between  x = xi  and 

 
x = x f . 

 
 

Figure 5 Plot of  x -component of a sample force   Fx (x)  as a function of  x . 
 
Example 13.6 Work done by the Spring Force 
 
Connect one end of a spring to a body resting on a smooth (frictionless) table and fix the 
other end of the spring to a wall. Stretch the spring and release the spring-body system.  
How much work does the spring do on the body as a function of the stretched or 
compressed length of the spring?  

 
Figure 13.6 Equilibrium position and position at time t  

 
Solution: We first begin by choosing a coordinate system with origin at the position of 
the body when the spring is at rest in the equilibrium position. We choose the î  unit 
vector to point in the direction the body moves when the spring is being stretched and the 
coordinate  x  to denote the position of the body with respect to the equilibrium position, 
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as in Figure 13.6 (which indicates that in general the position  x  will be a function of 
time).  The spring force on the body is given by 
 
    


Fs = Fx

s î = −kx î . (13.5.4) 
 
 In Figure 13.7 we show the graph of the  x -component of the spring force as a 
function of  x  for both positive values of  x  corresponding to stretching, and negative 
values of  x  corresponding to compressing of the spring. Note that 0x  and fx  can be 
positive, zero, or negative. 

 
 

Figure 13.7 The  x -component of the spring force as a function of  x  
 
The work done is just the area under the curve for the interval 0x  to fx , 
 

 
  
W = Fx

s dx =
x=x0

x=x f

∫ (−kx)dx
x=x0

x=x f

∫ . (13.5.5) 

 
This integral is straightforward; the work done by the spring force on the body is 
 

 W = (−kx)dx = −
1
2x= x0

x= x f

∫ k(x f
2 − x0

2 ) . (13.5.6) 

 
When the absolute value of the final distance is less than the absolute value of the initial 
distance, 

 
x f < x0 , the work done by the spring force is positive. This means that if the 

spring is less stretched or compressed in the final state than in the initial state, the work 
done by the spring force is positive. The spring force does positive work on the body 
when the spring goes from a state of ‘greater tension’ to a state of ‘lesser tension’.  
 
13.6 Work-Kinetic Energy Theorem 
 
There is a direct connection between the work done on a point-like object and the change 
in kinetic energy the point-like object undergoes. If the work done on the object is non-
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zero, this implies that an unbalanced force has acted on the object, and the object will 
have undergone acceleration. For an object undergoing one-dimensional motion the left 
hand side of Equation (13.3.16) is the work done on the object by the component of the 
sum of the forces in the direction of displacement,  
  

 
  
W = Fx dx

x=xi

x=x f

∫ = 1
2

mv f
2 − 1

2
mvi

2 = K f − Ki = ΔK  (13.6.1) 

 
When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed. In fact, the work-energy relationship is quite 
precise; the work done by the applied force on an object is identically equal to the change 
in kinetic energy of the object. 
 
Example 13.7 Gravity and the Work-Energy Theorem 
 
Suppose a ball of mass   m = 0.2 kg  starts from rest at a height   y0 = 15 m  above the 
surface of the earth and falls down to a height   

y f = 5.0 m  above the surface of the earth. 
What is the change in the kinetic energy? Find the final velocity using the work-energy 
theorem.  
 
Solution:  As only one force acts on the ball, the change in kinetic energy is the work 
done by gravity, 
 

 
  

W g = −mg( y f − y0 )

= (−2.0×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0×101 J.
 (13.6.2) 

 
The ball started from rest,   

vy ,0 = 0 . So the change in kinetic energy is 
 

 
  
ΔK =

1
2

mvy , f
2 −

1
2

mvy ,0
2 =

1
2

mvy , f
2 . (13.6.3) 

 
We can solve Equation (13.6.3) for the final velocity using Equation (13.6.2) 
 

 
  
vy , f =

2ΔK
m

= 2W g

m
= 2(2.0×101 J)

0.2 kg
= 1.4×101 m ⋅s-1 . (13.6.4) 

 
For the falling ball in a constant gravitation field, the positive work of the gravitation 
force on the body corresponds to an increasing kinetic energy and speed. For a rising 
body in the same field, the kinetic energy and hence the speed decrease since the work 
done is negative.  
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Example 13.7 Final Kinetic Energy of Moving Cup 
 
A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m as in 
Example 13.4. The coefficient of friction between the table and the cup is   µk = 0.1. If the 
cup was initially at rest, what is the final kinetic energy of the cup after being pushed 0.5 
m? What is the final speed of the cup? 
 
Solution: The total work done on the cup is the sum of the work done by the pushing 
force and the work done by the frictional force, as given in Equations (13.4.9) and 
(13.4.14), 

 
  

W =W a +W f = (Fx
a − µk N )(x f − xi )

= (1.7 N − 9.6×10−2 N)(0.5 m) = 8.0×10−1 J
. (13.6.5) 

 
The initial velocity is zero so the change in kinetic energy is just 
 

 
  
ΔK =

1
2

mvy , f
2 −

1
2

mvy ,0
2 =

1
2

mvy , f
2 . (13.6.6) 

 
Thus the work-kinetic energy theorem, Eq.(13.6.1)), enables us to solve for the final 
kinetic energy, 

 
  
K f =

1
2

mv f
2 = ΔK =W = 8.0×10−1 J . (13.6.7) 

 
We can solve for the final speed,  
 

 
  
vy , f =

2K f

m
= 2W

m
= 2(8.0×10−1 J)

0.2 kg
= 2.9 m ⋅s-1 . (13.6.8) 

 
13.7 Power Applied by a Constant Force 
 
Suppose that an applied force    


Fa  acts on a body during a time interval  Δt , and the 

displacement of the point of application of the force is in the x -direction by an amount 
 Δx . The work done,  ΔW a , during this interval is 
 
  ΔW a = Fx

a Δx . (13.7.1) 
 
where  Fx

a  is the x -component of the applied force.  (Equation (13.7.1) is the same as 
Equation (13.4.2).) 
 

The average power of an applied force is defined to be the rate at which work is 
done,  
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Pave

a = ΔW a

Δt
=

Fx
a Δx
Δt

= Fx
avave,x . (13.7.2) 

 
 
The average power delivered to the body is equal to the component of the force in the 
direction of motion times the component of the average velocity of the body. Power is a 
scalar quantity and can be positive, zero, or negative depending on the sign of work. The 
SI units of power are called watts  [W]  and  [1 W] = [1 J ⋅ s-1] . 
 

The instantaneous power at time t  is defined to be the limit of the average power 
as the time interval [t,t + Δt]  approaches zero,  
 

 
  
Pa = lim

Δt→0

ΔW a

Δt
= lim

Δt→0

Fx
a Δx
Δt

= Fx
a lim

Δt→0

Δx
Δt

⎛
⎝⎜

⎞
⎠⎟
= Fx

avx . (13.7.3) 

 
The instantaneous power of a constant applied force is the product of the component of 
the force in the direction of motion and the instantaneous velocity of the moving object. 
 
Example 13.8 Gravitational Power for a Falling Object  
 
Suppose a ball of mass   m = 0.2 kg  starts from rest at a height   y0 = 15 m  above the 
surface of the earth and falls down to a height   

y f = 5.0 m  above the surface of the earth. 
What is the average power exerted by the gravitation force? What is the instantaneous 
power when the ball is at a height   

y f = 5.0 m  above the surface of the Earth? Make a 
graph of power vs. time. You may ignore the effects of air resistance.  
 
Solution: There are two ways to solve this problem. Both approaches require calculating 
the time interval tΔ  for the ball to fall. Set   t0 = 0  for the time the ball was released. We 
can solve for the time interval  

Δt = t f  that it takes the ball to fall using the equation for a 
freely falling object that starts from rest, 
 

 
  
y f = y0 −

1
2

gt f
2 . (13.7.4) 

Thus the time interval for falling is 
 

 
  
t f =

2
g

( y0 − y f ) =
2

9.8 m ⋅ s-2 (15 m − 5 m) = 1.4 s . (13.7.5) 

 
First approach: we can calculate the work done by gravity, 
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W g = −mg( y f − y0 )

= (−2.0×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0×101 J.
 (13.7.6) 

 
Then the average power is 

 
  
Pave

g = ΔW
Δt

= 2.0×101 J
1.4 s

= 1.4×101 W . (13.7.7) 

 
Second Approach. We calculate the gravitation force and the average velocity. The 
gravitation force is 
 
 

  
Fy

g = −mg= −(2.0×10−1 kg)(9.8 m ⋅s-2 ) = −2.0 N . (13.7.8) 
 
The average velocity is 

 
  
vave,y =

Δy
Δt

= 5 m −15 m
1.4 s

= −7.0 m ⋅s-1 . (13.7.9) 

 
The average power is therefore 
 

 
  

Pave
g = Fy

g vave,y = (−mg)vave,y

= (−2.0 N)(−7.0 m ⋅s-1) = 1.4×101 W.
 (13.7.10) 

 
 
In order to find the instantaneous power at any time, we need to find the instantaneous 
velocity at that time. The ball takes a time   

t f = 1.4 s  to reach the height   
y f = 5.0 m . The 

velocity at that height is given by 
 
 

  
vy = −gt f = −(9.8 m ⋅ s-2 )(1.4 s) = −1.4 ×101 m ⋅ s-1 . (13.7.11) 

 
So the instantaneous power at time   

t f = 1.4 s  is 
 

 
  

Pg = Fy
g vy = (−mg)(−gt f ) = mg 2t f

= (0.2 kg)(9.8 m ⋅s-2 )2(1.4 s) = 2.7 ×101 W
 (13.7.12) 

 
If this problem were done symbolically, the answers given in Equation (13.7.11) and 
Equation (13.7.12) would differ by a factor of two; the answers have been rounded to two 
significant figures. 
 
The instantaneous power grows linearly with time. The graph of power vs. time is shown 
in Figure 13.8.  From the figure, it should be seen that the instantaneous power at any 
time is twice the average power between 0t =  and that time. 
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Figure 13.8 Graph of power vs. time 
 
Example 13.9 Power Pushing a Cup 
 
A person pushes a cup of mass  0.2 kg  along a horizontal table with a force of magnitude 

 2.0 N  at an angle of   30o  with respect to the horizontal for a distance of  0.5 m , as in 
Example 13.4. The coefficient of friction between the table and the cup is   µk = 0.1. What 
is the average power of the pushing force? What is the average power of the kinetic 
frictional force? 
 
Solution: We will use the results from Examples 13.4 and 13.7 but keeping extra 
significant figures in the intermediate calculations.  The work done by the pushing force 
is 
 

  
W a = Fx

a (x f − x0 ) = (1.732 N)(0.50 m) = 8.660×10−1 J . (13.7.13) 
 
The final speed of the cup is -1

, 2.860 m sx fv = ⋅ .  Assuming constant acceleration, the 
time during which the cup was pushed is 
 

 t f =
2(x f − x0 )

vx, f
= 0.3496s . (13.7.14) 

 
The average power of the pushing force is then, with ft tΔ = , 
 

 
  
Pave

a = ΔW a

Δt
= 8.660×10−1 J

0.3496 s
= 2.340 W , (13.7.15) 

 
or 2 3W.  to two significant figures. The work done by the frictional force is 
 

 
  

W f = fk (x f − x0 )

= −µk N (x f − x0 ) = −(9.6×10−2 N)(0.50 m) = −(4.8×10−2 J).
 (13.7.16) 

 
The average power of kinetic friction is 
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Pave

f = ΔW f

Δt
= −4.8×10−2 J

0.3496 s
= −1.4×10−1 W.  (13.7.17) 

 
The time rate of change of the kinetic energy for a body of mass m  moving in the x -
direction is 

 21
2

x
x x x x

dK d dv
mv m v ma v

dt dt dt
⎛ ⎞= = =⎜ ⎟⎝ ⎠

. (13.7.18) 

 
By Newton’s Second Law, x xF ma= , and so Equation (13.7.18) becomes 
 

 
 

dK
dt

= Fxvx = P . (13.7.19) 

 
The instantaneous power delivered to the body is equal to the time rate of change of the 
kinetic energy of the body. 
 
13.8 Work and the Scalar Product 
 
We shall introduce a vector operation, called the scalar product or “dot product” that 
takes any two vectors and generates a scalar quantity (a number). We shall see that the 
physical concept of work can be mathematically described by the scalar product between 
the force and the displacement vectors. 
 
13.8.1 Scalar Product 
 
Let A


 and B


 be two vectors. Because any two non-collinear vectors form a plane, we 

define the angle θ  to be the angle between the vectors A


 and B


 as shown in Figure 
13.9.  Note that θ  can vary from 0  to π . 

 
Figure 13.9 Scalar product geometry. 

 
The scalar product   


A ⋅

B  of the vectors A


 and B


 is defined to be product of the 

magnitude of the vectors A


 and B


 with the cosine of the angle θ  between the 
two vectors: 
 
     A


⋅B

= ABcos(θ) , (13.8.1) 
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where | |A = A


 and | |B = B


 represent the magnitude of A


 and B


 respectively.  

The scalar product can be positive, zero, or negative, depending on the value of 
cosθ . The scalar product is always a scalar quantity. 

 
The angle formed by two vectors is therefore 
 

 
   
θ = cos−1


A ⋅

B


A

B

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. (13.8.2) 

 
The magnitude of a vector   


A  is given by the square root of the scalar product of the 

vector   

A  with itself.  

 
   

A = (


A ⋅

A)1/ 2 . (13.8.3) 

 
We can give a geometric interpretation to the scalar product by writing the definition as  
 
     


A ⋅

B = ( Acos(θ)) B . (13.8.4) 

 
In this formulation, the term cosA θ  is the projection of the vector B


 in the direction of 

the vector B


. This projection is shown in Figure 13.10a. So the scalar product is the 
product of the projection of the length of A


 in the direction of B


 with the length of B


. 

Note that we could also write the scalar product as  
 
     


A ⋅

B = A(Bcos(θ)) . (13.8.5) 

 
Now the term   Bcos(θ)  is the projection of the vector B


 in the direction of the vector A


 

as shown in Figure 13.10b. From this perspective, the scalar product is the product of the 
projection of the length of B


 in the direction of A


 with the length of A


. 

 

  
(a)     (b) 

 
Figure 13.10 (a) and (b) Projection of vectors and the scalar product 
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From our definition of the scalar product we see that the scalar product of two vectors 
that are perpendicular to each other is zero since the angle between the vectors is / 2π  
and  cos(π / 2) = 0 .  
  
We can calculate the scalar product between two vectors in a Cartesian coordinates 
system as follows. Consider two vectors 

    

A = Ax î + Ay ĵ+ Az k̂  and 

    

B = Bx î + By ĵ+ Bz k̂ . Recall that  

 
  

î ⋅ î = ĵ⋅ ĵ= k̂ ⋅ k̂ = 1
î ⋅ ĵ= ĵ⋅ k̂ = î ⋅ k̂ = 0.

 (13.8.6) 

 
The scalar product between   


A  and   


B  is then 

 
 

   

A ⋅

B = Ax Bx + Ay By + Az Bz . (13.8.7) 

 
The time derivative of the scalar product of two vectors is given by 
 

     

 

d
dt
(

A ⋅

B) = d

dt
(Ax Bx + Ay By + Az Bz )

= d
dt
(Ax )Bx +

d
dt
(Ay )By +

d
dt
(Az )Bz + Ax

d
dt
(Bx )+ Ay

d
dt
(By )+ Az

d
dt
(Bz )

= d
dt

A⎛

⎝⎜
⎞
⎠⎟ ⋅

B+

A ⋅ d

dt

B⎛

⎝⎜
⎞
⎠⎟ .

 (13.8.8) 

 
In particular when  


A =

B , then the time derivative of the square of the magnitude of the 

vector  

A  is given by 

 

 
 

d
dt
A2 = d

dt
(

A ⋅

A) = d

dt

A⎛

⎝⎜
⎞
⎠⎟
⋅

A +

A ⋅

d
dt

A⎛

⎝⎜
⎞
⎠⎟
= 2 d

dt

A⎛

⎝⎜
⎞
⎠⎟
⋅

A . (13.8.9) 

 
 
13.8.2 Kinetic Energy and the Scalar Product 
 
For an object undergoing three-dimensional motion, the velocity of the object in 
Cartesian components is given by 

    
v = vx î + vy ĵ+ vzk̂ . Recall that the magnitude of a 

vector is given by the square root of the scalar product of the vector with itself, 
 
 

    
A ≡

A ≡ (


A ⋅

A)1/ 2 = ( Ax

2 + Ay
2 + Az

2 )1/ 2 . (13.8.10) 
 
Therefore the square of the magnitude of the velocity is given by the expression  
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v2 ≡ (v ⋅ v) = vx

2 + vy
2 + vz

2 . (13.8.11) 
 
Hence the kinetic energy of the object is given by 
 

 
    
K =

1
2

m(v ⋅ v) =
1
2

m(vx
2 + vy

2 + vz
2 ) . (13.8.12) 

 
13.8.2 Work and the Scalar Product 
 
Work is an important physical example of the mathematical operation of taking the scalar 
product between two vectors. Recall that when a constant force acts on a body and the 
point of application of the force undergoes a displacement along the  x -axis, only the 
component of the force along that direction contributes to the work, 
 
  W = FxΔx . (13.8.13) 
 
 Suppose we are pulling a body along a horizontal surface with a force F


. Choose 

coordinates such that horizontal direction is the x -axis and the force F


 forms an angle 
β  with the positive x -direction. In Figure 13.11 we show the force vector 

x y
ˆ ˆF F= +F i j


 and the displacement vector of the point of application of the force 

ˆxΔ = Δx i . Note that ˆxΔ = Δx i  is the component of the displacement and hence can be 
greater, equal, or less than zero (but is shown as greater than zero in the figure for 
clarity). The scalar product between the force vector F


 and the displacement vector Δx  

is  
 ˆ ˆ ˆ( ) ( )x y xF F x F x⋅Δ = + ⋅ Δ = ΔF x i j i

  . (13.8.14) 
 

 
 

Figure 13.11 Force and displacement vectors 
 
The work done by the force is then 
 WΔ = ⋅ΔF x

  . (13.8.15) 
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In general, the angle β  takes values within the range −π ≤ β ≤ π  (in Figure 13.11, 
0 / 2β π≤ ≤ ).  Because the  x -component of the force is Fx = F cos(β)  where | |F = F


 

denotes the magnitude of F


, the work done by the force is  
 
 ( cos( ))W F xβ= ⋅Δ = ΔF x

  . (13.8.16) 
 
 
Example 13.10 Object Sliding Down an Inclined Plane 
 
An object of mass   m = 4.0kg , starting from rest, slides down an inclined plane of length 

  l = 3.0m . The plane is inclined by an angle of  θ = 300  to the ground. The coefficient of 
kinetic friction is   µk = 0.2 . (a) What is the work done by each of the three forces while 
the object is sliding down the inclined plane? (b) For each force, is the work done by the 
force positive or negative? (c) What is the sum of the work done by the three forces?  Is 
this positive or negative? 
 
Solution: (a) and (b) Choose a coordinate system with the origin at the top of the inclined 
plane and the positive  x -direction pointing down the inclined plane, and the positive y -
direction pointing towards the upper right as shown in Figure 13.12. While the object is 
sliding down the inclined plane, three uniform forces act on the object, the gravitational 
force which points downward and has magnitude  

Fg = mg , the normal force  N  which is 
perpendicular to the surface of the inclined plane, and the frictional force which opposes 
the motion and is equal in magnitude to  fk = µk N . A force diagram on the object is 
shown in Figure 13.13. 
 

 
Figure 13.12 Coordinate system for 
object sliding down inclined plane 

 
 

 
 

Figure 13.13 Free-body force diagram 
for object 

In order to calculate the work we need to determine which forces have a component in 
the direction of the displacement. Only the component of the gravitational force along the 
positive  x -direction   

Fgx = mg sinθ  and the frictional force are directed along the 
displacement and therefore contribute to the work. We need to use Newton’s Second Law 
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to determine the magnitudes of the normal force. Because the object is constrained to 
move along the positive  x -direction,   

ay = 0 , Newton’s Second Law in the   ĵ -direction 

  N − mg cosθ = 0 . Therefore   N = mg cosθ  and the magnitude of the frictional force is 

  fk = µk mg cosθ . 
 
With our choice of coordinate system with the origin at the top of the inclined plane and 
the positive  x -direction pointing down the inclined plane, the displacement of the object 
is given by the vector     Δ

r = Δx î  (Figure 13.14). 

 
 

Figure 13.14 Force vectors and displacement vector for object 
 

The vector decomposition of the three forces are     

Fg = mgsinθ î − mgcosθ ĵ , 

    

F f = −µkmgcosθ î , and     


FN = mgcosθ ĵ . The work done by the normal force is zero 

because the normal force is perpendicular the displacement   
 

    W
N =

FN ⋅ Δr = mgcosθ ĵ⋅ l î = 0 . 

 
Then the work done by the frictional force is negative and given by 
 
     W

f =

F f ⋅ Δr = −µkmgcosθ î ⋅ l î = −µkmgcosθl < 0 . 

  
Substituting in the appropriate values yields 
 

  W
f = −µkmg cosθl = −(0.2)(4.0kg)(9.8m ⋅s-2 )(3.0m)(cos(30o )(3.0m) = −20.4 J . 

 
The work done by the gravitational force is positive and given by 
 

    W
g =

Fg ⋅ Δr = (mgsinθ î − mgcosθ ĵ) ⋅ l î = mglsinθ > 0 . 

 
Substituting in the appropriate values yields 
 

  W
g = mglsinθ = (4.0kg)(9.8 m ⋅s-2 )(3.0m)(sin(30o ) = 58.8 J . 
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(c) The scalar sum of the work done by the three forces is then 
 

  

W =W g +W f = mgl(sinθ − µk cosθ )

W = (4.0kg)(9.8m ⋅s-2 )(3.0m)(sin(30o )− (0.2)(cos(30o )) = 38.4 J.
 

 
13.9 Work done by a Non-Constant Force Along an Arbitrary Path 
 
Suppose that a non-constant force F


 acts on a point-like body of mass  m  while the body 

is moving on a three dimensional curved path. The position vector of the body at time  t  
with respect to a choice of origin is ( )tr . In Figure 13.15 we show the orbit of the body 
for a time interval [ti ,t f ]  moving from an initial position     

ri ≡
r(t = ti )  at time  t = ti  to a 

final position 
    
rf ≡
r(t = t f )  at time  

t = t f .  

 
 

Figure 13.15 Path traced by the motion of a body. 
 
We divide the time interval [ti ,t f ]  into  N  smaller intervals with 1[ , ]j jt t− ,   j = 1,⋅⋅⋅, N  

with  
tN = t f . Consider two position vectors 

    
rj ≡
r(t = t j )  and 

    
rj−1 ≡

r(t = t j−1)  the 

displacement vector during the corresponding time interval as 
   
Δrj =

rj −
rj−1 . Let F


 

denote the force acting on the body during the interval 1[ , ]j jt t− . The average force in this 

interval is 
    
(

Fj )ave  and the average work jWΔ  done by the force during the time interval 

1[ , ]j jt t−  is the scalar product between the average force vector and the displacement 
vector,  
 

    
ΔWj = (


Fj )ave ⋅ Δ

rj . (13.8.17) 
 
The force and the displacement vectors for the time interval 1[ , ]j jt t−  are shown in Figure 

13.16 (note that the subscript “ave” on 
    
(

Fj )ave  has been suppressed). 
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Figure 13.16 An infinitesimal work element. 
 
 We calculate the work by adding these scalar contributions to the work for each 
interval 1[ , ]j jt t− , for 1j =  to N , 
 

 
    
WN = ΔWj

j=1

j=N

∑ = (

Fj )ave ⋅ Δ

rj
j=1

j=N

∑ . (13.8.18) 

 
 We would like to define work in a manner that is independent of the way we 
divide the interval, so we take the limit as N →∞  and 0jΔ →r  for all j . In this limit, 
as the intervals become smaller and smaller, the distinction between the average force 
and the actual force vanishes. Thus if this limit exists and is well defined, then the work 
done by the force is  

 

    

W = lim
N→∞
Δrj →0

(

Fj )ave ⋅ Δ

rj
j=1

j=N

∑ =

F ⋅ dr

i

f

∫ . (13.8.19) 

 
Notice that this summation involves adding scalar quantities. This limit is called the line 
integral of the force F


. The symbol dr  is called the infinitesimal vector line element. 

At time  t , dr  is tangent to the orbit of the body and is the limit of the displacement 
vector ( ) ( )t t tΔ = + Δ −r r r    as  Δt  approaches zero.  In this limit, the parameter  t  does not 
appear in the expression in Equation (13.8.19). 
 
 In general this line integral depends on the particular path the body takes between 
the initial position    

ri  and the final position fr
 , which matters when the force F


 is non-

constant in space, and when the contribution to the work can vary over different paths in 
space. We can represent the integral in Equation (13.8.19) explicitly in a coordinate 
system by specifying the infinitesimal vector line element dr  and then explicitly 
computing the scalar product.  
 
13.9.1 Work Integral in Cartesian Coordinates 
 
In Cartesian coordinates the line element is 
 



 13-29 

 ˆ ˆ ˆd dx dy dz= + +r i j k , (13.8.20) 
 
where  dx ,  dy , and  dz  represent arbitrary displacements in the   ̂i -,   ĵ -, and   ̂k -directions 
respectively as seen in Figure 13.17. 
 

 
 

Figure 13.17 A line element in Cartesian coordinates. 
 
The force vector can be represented in vector notation by 
 
 x y z

ˆ ˆ ˆF F F= + +F i j k


. (13.8.21) 
 
The infinitesimal work is the sum of the work done by the component of the force times 
the component of the displacement in each direction, 
 
 

 
dW = Fxdx + Fydy + Fzdz . (13.8.22) 

 
Eq. (13.8.22) is just the scalar product 
 

 
    

dW =

F ⋅dr = (Fx î + Fy ĵ+ Fz k̂) ⋅(dx î + dy ĵ+ dz k̂)

= Fxdx + Fydy + Fzdz
, (13.8.23) 

The work is 
 

    
    
W =


F ⋅ dr

r= r0

r= r f

∫ = (Fxdx + Fydy + Fzdz)
r= r0

r= r f

∫ = Fxdx
r= r0

r= r f

∫ + Fydy
r= r0

r= r f

∫ + Fzdz
r= r0

r= r f

∫ .  (13.8.24) 

 
 
13.9.2 Work Integral in Cylindrical Coordinates 
 
In cylindrical coordinates the line element is 
 
     d

r = dr r̂ + rdθ θ̂ + dz k̂ , (13.8.25) 
 
where  dr ,  rdθ , and  dz  represent arbitrary displacements in the   ̂r -,  ̂θ -, and   ̂k -
directions respectively as seen in Figure 13.18. 
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Figure 13.18 Displacement vector d s  between two points 
 
The force vector can be represented in vector notation by 
 
    


F = Fr r̂ + Fθ θ̂ + Fz k̂ . (13.8.26) 

 
The infinitesimal work is the scalar product 
 

 
    

dW =

F ⋅dr = (Fr r̂ + Fθ θ̂ + Fz k̂) ⋅(dr r̂ + rdθ θ̂ + dz k̂)

= Frdr + Fθrdθ + Fzdz.
 (13.8.27) 

 
The work is 
 

    
    
W =


F ⋅ dr

r= r0

r= r f

∫ = (Frdr + Fθrdθ + Fzdz)
r= r0

r= r f

∫ = Frdr
r= r0

r= r f

∫ + Fθrdθ
r= r0

r= r f

∫ + Fzdz
r= r0

r= r f

∫ .   (13.8.28) 

 
 
13.10 Worked Examples  
 
Example 13.11 Work Done in a Constant Gravitation Field 
 
The work done in a uniform gravitation field is a fairly straightforward calculation when 
the body moves in the direction of the field. Suppose the body is moving under the 
influence of gravity,    


F = −mg ĵ  along a parabolic curve. The body begins at the point 

  (x0 , y0 )  and ends at the point   
(x f , y f ) . What is the work done by the gravitation force on 

the body? 
 
Solution:  The infinitesimal line element dr  is therefore  
 
    d

r = dx î + dy ĵ . (13.9.1) 
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The scalar product that appears in the line integral can now be calculated, 
 
     


F ⋅ d r = −mg ĵ ⋅[dx î + dy ĵ] = −mgdy . (13.9.2) 

 
This result is not surprising since the force is only in the  y -direction. Therefore the only 
non-zero contribution to the work integral is in the  y -direction, with the result that  
 

 
0 0 0

r

0
r

( )
f f fy y y y

y f
y y y y

W d F dy mgdy mg y y
= =

= =

= ⋅ = = − = − −∫ ∫ ∫F r
  . (13.9.3) 

 
In this case of a constant force, the work integral is independent of path. 
 
Example 13.12 Hooke’s Law Spring-Body System 
 
Consider a spring-body system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to a body of mass m  (Figure 13.19). 
Calculate the work done by the spring force on body as the body moves from some initial 
position to some final position.  

 
 

Figure 13.19 A spring-body system. 
 
Solution: Choose the origin at the position of the center of the body when the spring is 
relaxed (the equilibrium position). Let x  be the displacement of the body from the origin. 
We choose the ˆ+i  unit vector to point in the direction the body moves when the spring is 
being stretched (to the right of 0x =  in the figure). The spring force on the body is then 
given by 
 x

ˆ ˆF kx= = −F i i


. (13.9.4) 
 
The work done by the spring force on the mass is 
 

 
  
Wspring = (−kx) dx = −

1
2x= x0

x= x f

∫ k(x f
2 − x0

2 ) . (13.9.5) 
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Example 13.13 Work done by the Inverse Square Gravitation Force 
 
Consider a body of mass  m  in moving in a fixed orbital plane about the sun. The mass of 
the sun is  ms . How much work does the gravitation interaction between the sun and the 
body done on the body during this motion? 
 
Solution: Let’s assume that the sun is fixed and choose a polar coordinate system with 
the origin at the center of the sun. Initially the body is at a distance  r0  from the center of 
the sun. In the final configuration the body has moved to a distance f 0r r<  from the 
center of the sun. The infinitesimal displacement of the body is given by 

    d
r = dr r̂ + rdθ θ̂ . The gravitation force between the sun and the body is given by 

 

 s
grav grav 2

Gm mˆ ˆF
r

= = −F r r


. (13.9.6) 

 
The infinitesimal work done work done by this gravitation force on the body is given by 
  
 

    
dW =


Fgrav ⋅d

r = (Fgrav ,r r̂) ⋅(dr r̂ + rdθ θ̂) = Fgrav ,rdr .  (13.9.7) 
 
Therefore the work done on the object as the object moves from  ri  to  

rf  is given by the 
integral 

 
    
W =


Fgrav ⋅ d

r =
ri

rf

∫ Fgrav ,r dr =
ri

rf

∫ −
Gmsunm

r 2

⎛

⎝⎜
⎞

⎠⎟
dr

ri

rf

∫ . (13.9.8) 

 
Upon evaluation of this integral, we have for the work 
 

 

  

W = −
Gmsunm

r 2

⎛

⎝⎜
⎞

⎠⎟
dr

ri

rf

∫ =
Gmsunm

r
ri

rf

= Gmsunm 1
rf

−
1
ri

⎛

⎝
⎜

⎞

⎠
⎟ . (13.9.9) 

 
Because the body has moved closer to the sun,  

rf < ri , hence 1 / rf > 1 / ri . Thus the work 
done by gravitation force between the sun and the body, on the body is positive, 
 

 
  
W = Gmsunm 1

rf

−
1
ri

⎛

⎝
⎜

⎞

⎠
⎟ > 0  (13.9.10) 

 
 We expect this result because the gravitation force points along the inward radial 
direction, so the scalar product and hence work of the force and the displacement is 
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positive when the body moves closer to the sun.  Also we expect that the sign of the work 
is the same for a body moving closer to the sun as a body falling towards the earth in a 
constant gravitation field, as seen in Example 4.7.1 above.  
 
Example 13.14 Work Done by the Inverse Square Electrical Force 
 
Let’s consider two point-like bodies, body 1 and body 2, with charges  q1  and  q2  
respectively interacting via the electric force alone. Body 1 is fixed in place while body 2 
is free to move in an orbital plane. How much work does the electric force do on the body 
2 during this motion?  
 
Solution: The calculation in nearly identical to the calculation of work done by the 
gravitational inverse square force in Example 13.13. The most significant difference is 
that the electric force can be either attractive or repulsive while the gravitation force is 
always attractive. Once again we choose polar coordinates centered on body 2 in the 
plane of the orbit. Initially a distance  r0  separates the bodies and in the final state a 
distance  

rf  separates the bodies. The electric force between the bodies is given by 
 

 
    


Felec = Felec r̂ = Felec,r r̂ =

1
4πε0

q1q2

r 2 r̂ . (13.9.11) 

 
The work done by this electric force on the body 2 is given by the integral 
 

 
    
W =


Felec ⋅ d

r =
ri

rf

∫ Felec,r dr =
ri

rf

∫
1

4πε0

q1q2

r2 dr
ri

rf

∫ . (13.9.12) 

 
Evaluating this integral, we have for the work done by the electric force 
 

 

  

W =
1

4πε0

q1q2

r 2 dr
ri

rf

∫ = −
1

4πε0

q1q2

r 2
ri

rf

= −
1

4πε0

q1q2

1
rf

−
1
ri

⎛

⎝
⎜

⎞

⎠
⎟ . (13.9.13) 

 
If the charges have opposite signs, q1q2 < 0 , we expect that the body 2 will move closer 
to body 1 so rf < ri , and 1 / rf > 1 / ri . From our result for the work, the work done by 
electrical force in moving body 2 is positive, 
 

 W = −
1
4πε0

q1q2 (
1
rf

−
1
ri
) > 0 . (13.9.14) 

 
Once again we see that bodies under the influence of electric forces only will naturally 
move in the directions in which the force does positive work. If the charges have the 
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same sign, then q1q2 > 0 . They will repel with rf > ri  and 1 / rf < 1 / ri . Thus the work is 
once again positive: 
 

 W = −
1
4πε0

q1q2
1
rf

−
1
ri

⎛

⎝⎜
⎞

⎠⎟
> 0 . (13.9.15) 

 
13.11 Work-Kinetic Energy Theorem in Three Dimensions 
 
Recall our mathematical result that for one-dimensional motion 
 

                     
  
m ax dx

i

f

∫ = m
dvx

dt
dx

i

f

∫ = m dvx

dx
dti

f

∫ = m vx dvx
i

f

∫ = 1
2

mvx , f
2 − 1

2
mvx , i

2 .  (13.11.1) 

 
Using Newton’s Second Law in the form  Fx = max , we concluded that 
 

 
  

Fx dx
i

f

∫ = 1
2

mvx , f
2 − 1

2
mvx ,i

2 . (13.11.2) 

 
Eq. (13.11.2) generalizes to the  y - and  z -directions: 
 

 
  

Fy dy
i

f

∫ = 1
2

mvy , f
2 − 1

2
mvy , i

2 , (13.11.3) 

 
  

Fz dz
i

f

∫ = 1
2

mvz , f
2 − 1

2
mvz , i

2 . (13.11.4) 

 
Adding Eqs. (13.11.2), (13.11.3), and (13.11.4) yields 
 

          
  

(Fx dx + Fy dy + Fz dz)
i

f

∫ = 1
2

m(vx , f
2 + vy , f

2 + vz , f
2 )− 1

2
m(vx , i

2 + vy , i
2 + vz , i

2 ) .         (13.11.5) 

 
Recall (Eq. (13.8.24)) that the left hand side of Eq. (13.11.5) is the work done by the 
force  


F  on the object  

 
    
W = dW

i

f

∫ = (Fx dx + Fy dy + Fz dz)
i

f

∫ =

F ⋅dr

i

f

∫  (13.11.6) 

 
The right hand side of Eq. (13.11.5) is the change in kinetic energy of the object  
 

    
  
ΔK ≡ K f − Ki =

1
2

mv f
2 − 1

2
mv0

2 = 1
2

m(vx , f
2 + vy , f

2 + vz , f
2 )− 1

2
m(vx , i

2 + vy , i
2 + vz , i

2 ) . (13.11.7) 
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Therefore Eq. (13.11.5) is the three dimensional generalization of the work-kinetic 
energy theorem 

 
    


F ⋅dr

i

f

∫ = K f − Ki .  (13.11.8) 

 
When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed.  
 
13.11.1 Instantaneous Power Applied by a Non-Constant Force for Three 
Dimensional Motion  
 
Recall that for one-dimensional motion, the instantaneous power at time t  is defined to 
be the limit of the average power as the time interval [t,t + Δt]  approaches zero,  

 
   P(t) = Fx

a (t)vx (t) . (13.11.9) 
 
A more general result for the instantaneous power is found by using the expression for 
dW  as given in Equation (13.8.23), 
 

 dW dP
dt dt

⋅= = = ⋅F r F v
    . (13.11.10) 

 
The time rate of change of the kinetic energy for a body of mass m  is equal to the power, 
 

 
 

dK
dt

= 1
2
m d
dt
v ⋅ v( ) = m dv

dt
⋅ v = m a ⋅ v =


F ⋅ v = P . (13.11.11) 

 
where the we used Eq. (13.8.9), Newton’s Second Law and Eq. (13.11.10).  
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Appendix 13A Work Done on a System of Two Particles 
 
We shall show that the work done by an internal force in changing a system of two 
particles of masses 1m  and 2m  respectively from an initial state A  to a final state B  is 
equal to  

 
  
Wc =

1
2
µ(vB

2 − vA
2 )  (13.A.1) 

 
where 2

Bv  is the square of the relative velocity in state B , 2
Av  is the square of the relative 

velocity in state A , and   µ = m1m2 / (m1 + m2 )  .  
 
Consider two bodies 1 and 2 and an interaction pair of forces shown in Figure 13A.1. 

 
 

Figure 13A.1 System of two bodies interacting 
 
We choose a coordinate system shown in Figure 13A.2. 
 

 
 

Figure 13A.2 Coordinate system for two-body interaction 
 
Newton’s Second Law applied to body 1 is  
 

 
    


F2,1 = m1

d 2r1

dt2  (13.A.2) 

and applied to body 2 is 
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F1,2 = m2

d 2r2

dt2 . (13.A.3) 

 
Divide each side of Equation (13.A.2) by 1m , 
 

 
    


F2,1

m1

=
d 2r1

dt2  (13.A.4) 

 
and divide each side of Equation (13.A.3) by 2m , 
 

 
    


F1,2

m2

=
d 2r2

dt2 . (13.A.5) 

 
Subtract Equation (13.A.5) from Equation (13.A.4) yielding 
 

 
    


F2,1

m1

−


F1,2

m2

=
d 2r1

dt2 −
d 2r2

dt2 =
d 2r2,1

dt2 , (13.A.6) 

 
where     

r2 ,1 =
r1 −
r2 . Use Newton’s Third Law, 

   

F2,1 = −


F1, 2  on the left hand side of 

Equation (13.A.6) to obtain 
 

 
    


F2,1

1
m1

+
1

m2

⎛

⎝⎜
⎞

⎠⎟
=

d 2r1

dt2 −
d 2r2

dt2 =
d 2r2,1

dt2 . (13.A.7) 

 
The quantity 2 2

1,2 /d dtr  is the relative acceleration of body 1 with respect to body 2. 
Define  

 
1 2

1 1 1
m mµ

≡ + . (13.A.8) 

 
The quantity µ  is known as the reduced mass of the system. Equation (13.A.7) now 
takes the form 

 
    


F2,1 = µ

d 2r2,1

dt2 . (13.A.9) 

 
The work done in the system in displacing the two masses from an initial state A  to a 
final state B  is given by 

 
    
W =


F2,1 ⋅ d

r1
A

B

∫ +

F1,2 ⋅ d

r2
A

B

∫ . (13.A.10) 
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Recall by the work energy theorem that the LHS is the work done on the system, 
 

 
    
W =


F2,1 ⋅ d

r1
A

B

∫ +

F1,2 ⋅ d

r2
A

B

∫ = ΔK . (13.A.11) 

 
From Newton’s Third Law, the sum in Equation (13.A.10) becomes 
 

 
    
W =


F2,1 ⋅d

r1
A

B

∫ −

F2,1 ⋅d

r2
A

B

∫ =

F2,1 ⋅(d r1 − d r2 )

A

B

∫ =

F2,1 ⋅d

r2,1
A

B

∫ , (13.A.12) 

 
where     d

r2 ,1  is the relative displacement of the two bodies. We can now substitute 
Newton’s Second Law, Equation (13.A.9), for the relative acceleration into Equation 
(13.A.12), 
 

 
    
W =


F2,1 ⋅ d

r2,1
A

B

∫ = µ
d 2r2,1

dt2 ⋅ d r2,1
A

B

∫ = µ
d 2r2,1

dt2 ⋅
dr2,1

dt

⎛

⎝
⎜

⎞

⎠
⎟ dt

A

B

∫ , (13.A.13) 

 

where we have used the relation between the differential elements 
    
dr2,1 =

dr2,1

dt
dt . The 

product rule for derivatives of the scalar product of a vector with itself is given for this 
case by 

 
    

1
2

d
dt

dr2,1

dt
⋅
dr2,1

dt
⎛

⎝
⎜

⎞

⎠
⎟ =

d 2r2,1

dt2 ⋅
dr2,1

dt
. (13.A.14) 

 
Substitute Equation (13.A.14) into Equation (13.A.13), which then becomes 
 

 
    
W = µ 1

2
d
dt

dr2,1

dt
⋅
dr2,1

dt
⎛

⎝
⎜

⎞

⎠
⎟ dt

A

B

∫ . (13.A.15) 

 
Equation (13.A.15) is now the integral of an exact derivative, yielding 
 

 
    
W =

1
2
µ

dr2,1

dt
⋅
dr2,1

dt
⎛

⎝
⎜

⎞

⎠
⎟

A

B

=
1
2
µ (v2,1 ⋅

v2,1)
A

B
=

1
2
µ(vB

2 − vA
2 ) , (13.A.16) 

 
where 

   
v2,1  is the relative velocity between the two bodies. It’s important to note that in 

the above derivation had we exchanged the roles of body 1 and 2 i.e.  1→ 2  and  2→ 1 , 
we would have obtained the identical result because 
 



 13-39 

 

    


F1,2 = −


F2,1

r1,2 =
r2 −
r1 = −r2,1

d r1,2 = d(r2 −
r1) = −d r2,1

v1,2 = −v2,1.

 (13.A.17) 

 
Equation (13.A.16) implies that the work done is the change in the kinetic energy of the 
system, which we can write in terms of the reduced mass and the change in the square of 
relative speed of the two objects 

 
  
ΔK =

1
2
µ(vB

2 − vA
2 ) . (13.A.18) 

 
 
  
 
 


