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Chapter 16 Two Dimensional Rotational Kinematics 
                 

Most galaxies exhibit rising rotational velocities at the largest measured 
velocity; only for the very largest galaxies are the rotation curves flat. Thus 
the smallest SC’s (i.e. lowest luminosity) exhibit the same lack of Keplerian 
velocity decrease at large R as do the high-luminosity spirals. The form for 
the rotation curves implies that the mass is not centrally condensed, but 
that significant mass is located at large R. The integral mass is increasing 
at least as fast as R. The mass is not converging to a limiting mass at the 
edge of the optical image. The conclusion is inescapable than non-
luminous matter exists beyond the optical galaxy.1 

 
               Vera Rubin 
 
16.1 Introduction 
 
The physical objects that we encounter in the world consist of collections of atoms that 
are bound together to form systems of particles.  When forces are applied, the shape of 
the body may be stretched or compressed like a spring, or sheared like jello. In some 
systems the constituent particles are very loosely bound to each other as in fluids and 
gasses, and the distances between the constituent particles will vary. We shall begin by 
restricting ourselves to an ideal category of objects, rigid bodies, which do not stretch, 
compress, or shear. 
 
 A body is called a rigid body if the distance between any two points in the body 
does not change in time. Rigid bodies, unlike point masses, can have forces applied at 
different points in the body. Let’s start by considering the simplest example of rigid body 
motion, rotation about a fixed axis.  
 
16.2 Fixed Axis Rotation: Rotational Kinematics  
 
16.2.1 Fixed Axis Rotation 
 
 A simple example of rotation about a fixed axis is the motion of a compact disc in 
a CD player, which is driven by a motor inside the player. In a simplified model of this 
motion, the motor produces angular acceleration, causing the disc to spin. As the disc is 
set in motion, resistive forces oppose the motion until the disc no longer has any angular 
acceleration, and the disc now spins at a constant angular velocity. Throughout this 
process, the CD rotates about an axis passing through the center of the disc, and is 
perpendicular to the plane of the disc (see Figure 16.1).  This type of motion is called 
fixed-axis rotation.  
                                                
1V.C. Rubin, W.K. Jr.  Ford, N Thonnard, Rotational properties of 21 SC galaxies with a large range of 
luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/, Astrophysical Journal, Part 
1, vol. 238, June 1, 1980, p. 471-487. 
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Figure 16.1 Rotation of a compact disc about a fixed axis. 

 
 When we ride a bicycle forward, the wheels rotate about an axis passing through 
the center of each wheel and perpendicular to the plane of the wheel (Figure 16.2). As 
long as the bicycle does not turn, this axis keeps pointing in the same direction. This 
motion is more complicated than our spinning CD because the wheel is both moving 
(translating) with some center of mass velocity, cmv

 , and rotating with an angular speed 
ω . 

 
Figure 16.2 Fixed axis rotation and center of mass translation for a bicycle wheel. 

 
 When we turn the bicycle’s handlebars, we change the bike’s trajectory and the 
axis of rotation of each wheel changes direction. Other examples of non-fixed axis 
rotation are the motion of a spinning top, or a gyroscope, or even the change in the 
direction of the earth’s rotation axis. This type of motion is much harder to analyze, so 
we will restrict ourselves in this chapter to considering fixed axis rotation, with or 
without translation. 
 
16.2.2 Angular Velocity and Angular Acceleration 
 
For a rigid body undergoing fixed-axis rotation, we can divide the body up into small 
volume elements with mass imΔ . Each of these volume elements is moving in a circle of 
radius  

ri  about the axis of rotation (Figure 16.3).  
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Figure 16.3 Coordinate system for fixed-axis rotation. 
 
We will adopt the notation implied in Figure 16.3, and denote the vector from the axis to 
the point where the mass element is located as    

ri , with magnitude 
   
ri =
ri . Suppose the 

fixed axis of rotation is the  z -axis. Introduce a right-handed coordinate system for an 
angle θ  in the plane of rotation and the choice of the positive z -direction perpendicular 
to that plane of rotation. Recall our definition of the angular velocity vector. The angular 
velocity vector is directed along the z -axis with z -component equal to the time 
derivative of the angle θ ,  
 

 
    


ω =

dθ
dt

k̂ =ω z k̂ . (16.1.1) 

 
The angular velocity vector for the mass element undergoing fixed axis rotation with 

  ω z > 0  is shown in Figure 16.4. Because the body is rigid, all the mass elements will have 
the same angular velocity  


ω  and hence the same angular acceleration  


α .  If the bodies 

did not have the same angular velocity, the mass elements would “catch up to” or “pass” 
each other, precluded by the rigid-body assumption. 
 

 
Figure 16.4 Angular velocity vector for a mass element for fixed axis rotation 

 
In a similar fashion, all points in the rigid body have the same angular acceleration,  
 

 
    


α =

d 2θ
dt2 k̂ = α z k̂ . (16.1.2) 
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The angular acceleration vector is shown in Figure 16.5. 
 

 
Figure 16.5 Angular acceleration vector for a rigid body rotating about the  z -axis 

 
16.2.3 Sign Convention: Angular Velocity and Angular Acceleration 

 
For rotational problems we shall always choose a right-handed cylindrical coordinate 
system. If the positive  z -axis points up, then we choose θ  to be increasing in the 
counterclockwise direction as shown in Figures 16.4 and 16.5. If the rigid body rotates in 
the counterclockwise direction, then the  z -component of the angular velocity is positive, 

  ω z = dθ / dt > 0 . The angular velocity vector then points in the   +k̂ -direction as shown in 
Figure 16.4. If the rigid body rotates in the clockwise direction, then the  z -component of 
the angular velocity angular velocity is negative,   ω z = dθ / dt < 0 . The angular velocity 

vector then points in the   −k̂ -direction.  
 
 If the rigid body increases its rate of rotation in the counterclockwise (positive) 
direction then the  z -component of the angular acceleration is positive, 

  α z ≡ d 2θ dt2 = dω z / dt > 0 . The angular acceleration vector then points in the   +k̂ -
direction as shown in Figure 16.5. If the rigid body decreases its rate of rotation in the 
counterclockwise (positive) direction then the  z -component of the angular acceleration is 
negative,   α z = d 2θ / dt2 = dω z / dt < 0 . The angular acceleration vector then points in the 

  −k̂ -direction. To phrase this more generally, if  

α  and  


ω  point in the same direction, the 

body is speeding up, if in opposite directions, the body is slowing down.  This general 
result is independent of the choice of positive direction of rotation. Note that in Figure 
16.1, the CD has the angular velocity vector points downward (in the   −k̂ -direction).  
 
16.2.4 Tangential Velocity and Tangential Acceleration 
 
Because the small element of mass, imΔ , is moving in a circle of radius  ri  with angular 

velocity     

ω = ω zk̂ , the element has a tangential velocity component  

 
   

vθ , i = riω z . (16.1.3) 
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If the magnitude of the tangential velocity is changing, the mass element undergoes a 
tangential acceleration given by  
 
   

aθ , i = riα z . (16.1.4) 
 
Recall that the mass element is always accelerating inward with radial component given 
by 

 
  
ar , i = −

vθ , i
2

ri

= −riω z
2 . (16.1.5) 

 
Example 16.1 Turntable 
 
A turntable is a uniform disc of mass 1.2 kg  and a radius 11.3 10 cm× . The turntable is 
spinning initially in a counterclockwise direction when seen from above at a constant rate 
of 1

0 33 cycles minf −= ⋅  (33 rpm ). The motor is turned off and the turntable slows to a 
stop in 8.0 s . Assume that the angular acceleration is constant. (a) What is the initial 
angular velocity of the turntable?  (b) What is the angular acceleration of the turntable? 
 
Solution: (a) Choose a coordinate system shown in Figure 16.6.  
 

 
 

Figure 16.6 Coordinate system for turntable 
 
Initially, the disc is spinning with a frequency 
 

 1
0

cycles 1min33 0.55 cycles s 0.55 Hz
min 60 s

f −⎛ ⎞⎛ ⎞= = ⋅ =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, (16.1.6) 

 
so the initial angular velocity has magnitude 
 

 1
0 0

radian cycles2 2 0.55 3.5 rad s
cycle s

fω π π −⎛ ⎞⎛ ⎞= = = ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (16.1.7) 

 
The angular velocity vector points in the   +k̂ -direction as shown above.  
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(b) The final angular velocity is zero, so the component of the angular acceleration is 
 

 
  
α z =

Δω z

Δt
=
ω f −ω0

t f − t0

=
−3.5 rad ⋅ s−1

8.0 s
= −4.3×10−1 rad ⋅ s−2 . (16.1.8) 

 
The  z -component of the angular acceleration is negative, the disc is slowing down and so 
the angular acceleration vector then points in the   −k̂ -direction as shown in Figure 16.7.  

 
Figure 16.7 Angular acceleration vector for turntable 

 
 
16.3 Rotational Kinetic Energy and Moment of Inertia 
 
16.3.1 Rotational Kinetic Energy and Moment of Inertia  
 
We have already defined translational kinetic energy for a point object as   K = (1 / 2)mv2 ; 
we now define the rotational kinetic energy for a rigid body about its center of mass.  

 
 

Figure 16.8 Volume element undergoing fixed-axis rotation about the z -axis that passes 
through the center of mass. 

 
Choose the z -axis to lie along the axis of rotation passing through the center of mass. As 
in Section 16.2.2, divide the body into volume elements of mass imΔ  (Figure 16.8). Each 
individual mass element imΔ  undergoes circular motion about the center of mass with  z -
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component of angular velocity  ωcm  in a circle of radius   
rcm, i . Therefore the velocity of 

each element is given by 
    
vcm, i = rcm, iωcm θ̂ . The rotational kinetic energy is then 

 

 
  
Kcm, i =

1
2
Δmi vcm, i

2 =
1
2
Δmircm, i

2 ωcm
2 . (16.2.1) 

 
We now add up the kinetic energy for all the mass elements, 
 

 

  

Kcm = lim
i→∞
Δmi→0

Kcm, i
i=1

i=N

∑ = lim
i→∞
Δmi→0

1
2
Δmircm, i

2

i
∑⎛⎝⎜

⎞
⎠⎟
ω cm

2

i=1

i=N

∑

= 1
2

dmrdm
2

body
∫

⎛

⎝
⎜

⎞

⎠
⎟ω cm

2 ,

 (16.2.2) 

 
where  dm  is an infinitesimal mass element undergoing a circular orbit of radius  rdm  
about the axis passing through the center of mass.  
 

The quantity 
 

  
Icm = dmrdm

2

bo dy
∫ . (16.2.3) 

 
is called the moment of inertia of the rigid body about a fixed axis passing 
through the center of mass, and is a physical property of the body. The SI units for 
moment of inertia are 2kg m⎡ ⎤⋅⎣ ⎦ . 

 
Thus 

 
  
Kcm =

1
2

dmrdm
2

bo dy
∫

⎛

⎝
⎜

⎞

⎠
⎟ωcm

2 ≡
1
2

Icmωcm
2 . (16.2.4) 

 
 
16.3.2 Moment of Inertia of a Rod of Uniform Mass Density 
 
Consider a thin uniform rod of length L  and mass m . In this problem, we will calculate 
the moment of inertia about an axis perpendicular to the rod that passes through the 
center of mass of the rod. A sketch of the rod, volume element, and axis is shown in 
Figure 16.9. Choose Cartesian coordinates, with the origin at the center of mass of the 
rod, which is midway between the endpoints since the rod is uniform. Choose the x -axis 
to lie along the length of the rod, with the positive x -direction to the right, as in the 
figure. 
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Figure 16.9 Moment of inertia of a uniform rod about center of mass. 
  
Identify an infinitesimal mass element dm dxλ= , located at a displacement x  from the 
center of the rod, where the mass per unit length /m Lλ =  is a constant, as we have 
assumed the rod to be uniform. When the rod rotates about an axis perpendicular to the 
rod that passes through the center of mass of the rod, the element traces out a circle of 
radius  rdm = x . We add together the contributions from each infinitesimal element as we 
go from 2x L= −  to 2x L= . The integral is then 
 

 

  

Icm = rdm
2 dm

bo dy
∫ = λ (x2 )

−L / 2

L / 2

∫ dx = λ x3

3
−L / 2

L / 2

=
m
L

(L / 2)3

3
−

m
L

(−L / 2)3

3
=

1
12

m L2.

 (16.2.5) 

 
By using a constant mass per unit length along the rod, we need not consider variations in 
the mass density in any direction other than the x - axis. We also assume that the width is 
the rod is negligible. (Technically we should treat the rod as a cylinder or a rectangle in 
the -x y  plane if the axis is along the z - axis. The calculation of the moment of inertia in 
these cases would be more complicated.) 
 
Example 16.2 Moment of Inertia of a Uniform Disc 
 
A thin uniform disc of mass  M  and radius  R  is mounted on an axle passing through the 
center of the disc, perpendicular to the plane of the disc. Calculate the moment of inertia 
about an axis that passes perpendicular to the disc through the center of mass of the disc 
  
Solution: As a starting point, consider the contribution to the moment of inertia from the 
mass element  dm  show in Figure 16.10. Let  r  denote the distance form the center of 
mass of the disc to the mass element.  

 
 

Figure 16.10 Infinitesimal mass element and coordinate system for disc. 
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Choose cylindrical coordinates with the coordinates   (r,θ)  in the plane and the  z -axis 
perpendicular to the plane. The area element 
 
  da = r dr dθ  (16.2.6) 
 
may be thought of as the product of arc length  r dθ  and the radial width  dr . Since the 
disc is uniform, the mass per unit area is a constant,  
 

 
  
σ =

dm
da

=
mtotal

Area
=

M
πR2

. (16.2.7) 

 
Therefore the mass in the infinitesimal area element as given in Equation (16.2.6), a 
distance  r  from the axis of rotation, is given by  
 

 
  
dm = σ r dr dθ =

M
πR2 r dr dθ . (16.2.8) 

 
When the disc rotates, the mass element traces out a circle of radius  rdm = r ; that is, the 
distance from the center is the perpendicular distance from the axis of rotation. The 
moment of inertia integral is now an integral in two dimensions; the angle θ  varies from 
 θ = 0  to  θ = 2π , and the radial coordinate  r  varies from   r = 0  to  r = R . Thus the limits 
of the integral are  

 
  
Icm = rdm

2 dm
bo dy
∫ =

M
πR2

r3 dθ
θ =0

θ =2π

∫r=0

r=R

∫ dr . (16.2.9) 

 
The integral can now be explicitly calculated by first integrating the θ -coordinate 
 

 
  
Icm =

M
πR2 dθ

θ =0

θ =2π

∫⎛⎝
⎞
⎠ r3dr

r=0

r=R

∫ =
M
πR2 2πr3dr

r=0

r=R

∫ =
2M
R2 r3dr

r=0

r=R

∫  (16.2.10) 

 
and then integrating the  r -coordinate, 
 

 
  
Icm =

2M
R2 r3dr

r=0

r=R

∫ =
2M
R2

r 4

4
r=0

r=R

=
2M
R2

R4

4
=

1
2

MR2 . (16.2.11) 

 
Remark: Instead of taking the area element as a small patch  da = r dr dθ , choose a ring 
of radius  r  and width  dr . Then the area of this ring is given by  
 
        

  
daring = π (r + dr)2 − πr 2 = πr 2 + 2πr dr + π (dr)2 − πr 2 = 2πr dr + π (dr)2 . (16.2.12) 
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In the limit that   dr → 0 , the term proportional to   (dr)2  can be ignored and the area is 
  da = 2πrdr .  This equivalent to first integrating the  dθ  variable 
 

 
  
daring = r dr dθ

θ =0

θ =2π

∫⎛⎝
⎞
⎠ = 2πr dr . (16.2.13) 

Then the mass element is 

 
  
dmring = σdaring =

M
πR2 2πr dr . (16.2.14) 

 
The moment of inertia integral is just an integral in the variable  r , 
 

 
  
Icm = (r⊥ )2 dm

body
∫ =

2π M
πR2

r3dr
r=0

r=R

∫ =
1
2

MR2 . (16.2.15) 

 
16.3.3 Parallel Axis Theorem 
 
Consider a rigid body of mass m  undergoing fixed-axis rotation. Consider two parallel 
axes. The first axis passes through the center of mass of the body, and the moment of 
inertia about this first axis is cmI . The second axis passes through some other point S  in 
the body. Let ,cmSd  denote the perpendicular distance between the two parallel axes 
(Figure 16.11).  
 

 
Figure 16.11 Geometry of the parallel axis theorem. 

 
Then the moment of inertia SI  about an axis passing through a point S  is related to cmI  
by 
 2

cm ,cmS SI I m d= + . (16.2.16) 
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16.3.4 Parallel Axis Theorem Applied to a Uniform Rod 
 
Let point S  be the left end of the rod of Figure 16.9. Then the distance from the center of 
mass to the end of the rod is ,cm / 2Sd L= . The moment of inertia endSI I=  about an axis 
passing through the endpoint is related to the moment of inertia about an axis passing 
through the center of mass, 2

cm (1/12)I mL= , according to Equation (16.2.16), 
 

 2 2 21 1 1
12 4 3SI mL mL mL= + = . (16.2.17) 

 
In this case it’s easy and useful to check by direct calculation.  Use Equation (16.2.5) but 
with the limits changed to 0x′ =  and x L′ = , where   ′x = x + L / 2 , 
 

 

2 2
end 0

body

3 3 3
2

0

( ) (0) 1
.

3 3 3 3

L

L

I r dm x dx

x m L m
mL

L L

λ

λ

⊥ ′ ′= =

′
= = − =

∫ ∫
 (16.2.18) 

 
 
Example 16.3 Rotational Kinetic Energy of Disk 
 
A disk with mass  M  and radius R  is spinning with angular speed ω  about an axis that 
passes through the rim of the disk perpendicular to its plane. The moment of inertia about 
cm is 2(1/ 2)cmI mR= . What is the kinetic energy of the disk? 
 
Solution: The parallel axis theorem states the moment of inertia about an axis passing 
perpendicular to the plane of the disc and passing through a point on the edge of the disc 
is equal to  
 

  
Iedge = Icm + mR2 . (16.2.19) 

 
The moment of inertia about an axis passing perpendicular to the plane of the disc and 
passing through the center of mass of the disc is equal to 2(1/ 2)cmI mR= . Therefore  
 
 

  
Iedge = (3 / 2)mR2 . (16.2.20) 

The kinetic energy is then  
 

  
K = (1 / 2)Iedgeω

2 = (3 / 4)mR2ω 2 . (16.2.21) 
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16.4 Conservation of Energy for Fixed Axis Rotation 
 
Consider a closed system (  

ΔEsystem = 0 ) under action of only conservative internal forces. 
Then the change in the mechanical energy of the system is zero 
 
   

ΔEm = ΔU + ΔK = (U f + K f )− (Ui + Ki ) = 0 . (16.3.1) 
 
For fixed axis rotation with a component of angular velocity ω  about the fixed axis, the 
change in kinetic energy is given by 
 

 
  
ΔK ≡ K f − Ki =

1
2

ISω f
2 − 1

2
ISω i

2 , (16.3.2) 

 
where  S  is  a point that lies on the fixed axis. Then conservation of energy implies that 
 

 
  
U f +

1
2

ISω f
2 =Ui +

1
2

ISω i
2  (16.3.3) 

 
Example 16.4 Energy and Pulley System  
 
A wheel in the shape of a uniform disk of radius R  and mass pm  is mounted on a 
frictionless horizontal axis. The wheel has moment of inertia about the center of mass 

2
cm p(1/ 2)I m R= . A massless cord is wrapped around the wheel and one end of the cord is 

attached to an object of mass 2m  that can slide up or down a frictionless inclined plane. 
The other end of the cord is attached to a second object of mass 1m  that hangs over the 
edge of the inclined plane. The plane is inclined from the horizontal by an angle θ  
(Figure 16.12). Once the objects are released from rest, the cord moves without slipping 
around the disk. Calculate the speed of block 2 as a function of distance that it moves 
down the inclined plane using energy techniques. Assume there are no energy losses due 
to friction and that the rope does not slip around the pulley 
 

   
 

Figure 16.12 Pulley and blocks   Figure 16.13 Coordinate system for 
pulley and blocks 

 



 16-13 

Solution: Define a coordinate system as shown in Figure 16.13. Choose the zero for the 
gravitational potential energy at a height equal to the center of the pulley. In Figure 16.14 
illustrates the energy diagrams for the initial state and a dynamic state at an arbitrary time 
when the blocks are sliding. 
 

 
 

Figure 16.14 Energy diagrams for initial state and dynamic state at arbitrary time 
 
Then the initial mechanical energy is  
 
   

Ei =Ui = −m1gy1, i − m2gx2,i sinθ . (16.3.4) 
 
The mechanical energy, when block 2 has moved a distance  
 
   

d = x2 − x2, i  (16.3.5) 
is given by 

 
  
E =U + K = −m1gy1 − m2gx2 sinθ +

1
2

m1v1
2 +

1
2

m2v2
2 +

1
2

IPω
2 . (16.3.6) 

 
The rope connects the two blocks, and so the blocks move at the same speed  
 
   v ≡ v1 = v2 . (16.3.7) 
 
The rope does not slip on the pulley; therefore as the rope moves around the pulley the 
tangential speed of the rope is equal to the speed of the blocks 
 
   vtan = Rω = v . (16.3.8) 
 
Eq. (16.3.6) can now be simplified 
 

 
  
E =U + K = −m1gy1 − m2gx2 sinθ +

1
2

m1 + m2 +
IP

R2

⎛

⎝⎜
⎞

⎠⎟
v2 . (16.3.9) 

 
Because we have assumed that there is no loss of mechanical energy, we can set  Ei = E  
and find that 
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−m1gy1, i − m2gx2, i sinθ = −m1gy1 − m2gx2 sinθ + 1

2
m1 + m2 +

IP

R2

⎛
⎝⎜

⎞
⎠⎟

v2 , (16.3.10) 

 
which simplifies to 

 
  
−m1g( y1,0 − y1)+ m2g(x2 − x2,0 )sinθ = 1

2
m1 + m2 +

IP

R2

⎛
⎝⎜

⎞
⎠⎟

v2 . (16.3.11) 

 
We finally note that the movement of block 1 and block 2 are constrained by the 
relationship 
   

d = x2 − x2, i = y1, i − y1 . (16.3.12) 
Then Eq. (16.3.11) becomes 
 

 
  
gd(−m1 + m2 sinθ) =

1
2

m1 + m2 +
IP

R2

⎛

⎝⎜
⎞

⎠⎟
v2 . (16.3.13) 

 
We can now solve for the speed as a function of distance   

d = x2 − x2, i  that block 2 has 
traveled down the incline plane 
 

 

  

v =
2gd(−m1 + m2 sinθ)
m1 + m2 + (IP / R2 )( ) . (16.3.14) 

 
If we assume that the moment of inertial of the pulley is 2

cm p(1/ 2)I m R= , then the speed 
becomes 

 
  
v =

2gd(−m1 + m2 sinθ)
m1 + m2 + (1 / 2)mP( ) . (16.3.15) 

 
Example 16.5 Physical Pendulum 
 
A physical pendulum consists of a uniform rod of mass   m1  pivoted at one end about the 
point  S . The rod has length   l1  and moment of inertia   I1  about the pivot point. A disc of 
mass   m2  and radius   r2  with moment of inertia   Icm  about its center of mass is rigidly 

attached a distance   l2  from the pivot point.  The pendulum is initially displaced to an 
angle  θ i  and then released from rest. (a) What is the moment of inertia of the physical 
pendulum about the pivot point  S ? (b) How far from the pivot point is the center of mass 
of the system? (c) What is the angular speed of the pendulum when the pendulum is at 
the bottom of its swing? 
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Figure 16.15 Rod and with fixed disc pivoted about the point  S  
 
Solution: a) The moment of inertia about the pivot point is the sum of the moment of 
inertia of the rod, given as   I1 , and the moment of inertia of the disc about the pivot point.  
The moment of inertia of the disc about the pivot point is found from the parallel axis 
theorem, 
   Idisc = Icm + m2 l2

2 . (16.3.16) 
 
The moment of inertia of the system consisting of the rod and disc about the pivot point 
 S  is then 
   IS = I1 + Idisc = I1 + Icm + m2 l2

2 . (16.3.17) 
 
The center of mass of the system is located a distance from the pivot point 
 

 
  
lcm =

m1(l1 / 2) + m2 l2

m1 + m2

. (16.3.18) 

 
b) We can use conservation of mechanical energy, to find the angular speed of the 
pendulum at the bottom of its swing. Take the zero point of gravitational potential energy 
to be the point where the bottom of the rod is at its lowest point, that is,  θ = 0 .  The 
initial state energy diagram for the rod is shown in Figure 16.16a and the initial state 
energy diagram for the disc is shown in Figure 16.16b.  
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(a)       (b) 

 
Figure 16.16 (a) Initial state energy diagram for rod (b) Initial state energy diagram for 

disc  
 
The initial mechanical energy is then 
 

 
  
Ei =Ui = m1 g (l1 −

l1
2

cosθ i )+ m2 g (l1 − l2 cosθ i ) , (16.3.19) 

 
At the bottom of the swing,   

θ f = 0 , and the system has angular velocity  
ω f . The 

mechanical energy at the bottom of the swing is  
 

 
  
E f =U f + K f = m1 g

l1
2
+ m2g(l1 − l2 ) +

1
2

ISω f
2 , (16.3.20) 

 
with  IS  as found in Equation (16.3.17).  There are no non-conservative forces acting, so 
the mechanical energy is constant therefore equating the expressions in (16.3.19) and 
(16.3.20) we get that 
 

        
  
m1 g (l1 −

l1
2

cosθ i )+ m2 g (l1 − l2 cosθ i ) = m1 g
l1
2
+ m2g(l1 − l2 )+ 1

2
ISω f

2 , (16.3.21) 

 
This simplifies to 

 
  

m1 l1
2

+ m2 l2

⎛
⎝⎜

⎞
⎠⎟

g (1− cosθ i ) =
1
2

ISω f
2 , (16.3.22) 

 
We now solve for  

ω f  (taking the positive square root to insure that we are calculating 
angular speed)  



 16-17 

 
  
ω f =

2
m1 l1

2
+ m2 l2

⎛
⎝⎜

⎞
⎠⎟

g (1− cosθ i )

IS

, (16.3.23) 

 
Finally we substitute in Eq.(16.3.17) in to Eq. (16.3.23) and find 
 

 
  
ω f =

2
m1 l1

2
+ m2 l2

⎛
⎝⎜

⎞
⎠⎟

g (1− cosθ i )

I1 + Icm + m2 l2
2 . (16.3.24) 

 
Note that we can rewrite Eq. (16.3.22), using Eq. (16.3.18) for the distance between the 
center of mass and the pivot point, to get 
 

 
  
(m1 + m2 )lcmg (1− cosθ i ) =

1
2

ISω f
2 , (16.3.25) 

 
We can interpret this equation as follows. Treat the system as a point particle of mass 

  m1 + m2  located at the center of mass  lcm . Take the zero point of gravitational potential 
energy to be the point where the center of mass is at its lowest point, that is,  θ = 0 . Then  
 
   Ei = (m1 + m2 )lcmg (1− cosθ i ) , (16.3.26) 

 
  
E f =

1
2

ISω f
2 . (16.3.27) 

 
Thus conservation of energy reproduces Eq. (16.3.25). 
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Appendix 16A: Proof of the Parallel Axis Theorem 
 
Identify an infinitesimal volume element of mass dm . The vector from the point S  to the 
mass element is ,S dmr , the vector from the center of mass to the mass element is    

rdm , and 
the vector from the point S  to the center of mass is ,cmSr

 . 
 

 
 

Figure 16A.1 Geometry of the parallel axis theorem. 
 
From Figure 16A.1, we see that 
 

    
rS , dm = rS , cm + rdm . (16.A.1) 

 
The notation gets complicated at this point.  The vector    

rdm  has a component vector 
    
r , dm  

parallel to the axis through the center of mass and a component vector 
    
r⊥ , dm  

perpendicular to the axis through the center of mass.  The magnitude of the perpendicular 
component vector is 

 
    
rcm,⊥ , dm = r⊥ , dm . (16.A.2) 

 
The vector ,S dmr  has a component vector 

    
rS , , dm  parallel to the axis through the point S  

and a component vector , ,S dm⊥r
  perpendicular to the axis through the point S .  The 

magnitude of the perpendicular component vector is 
 

 , , , ,S dm S dmr⊥ ⊥=r . (16.A.3) 
 

The vector ,cmSr
  has a component vector , ,cmSr 

  parallel to both axes and a perpendicular 
component vector , ,cmS ⊥r

  that is perpendicular to both axes (the axes are parallel, of 
course).  The magnitude of the perpendicular component vector is 
 
 , ,cm ,cmS Sd⊥ =r . (16.A.4) 
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Equation (16.A.1) is now expressed as two equations, 
 

 
    

rS ,⊥ , dm = rS ,⊥ , cm + r⊥ ,dm
rS ,,dm = rS ,,cm + r,dm.

 (16.A.5) 

 
At this point, note that if we had simply decided that the two parallel axes are parallel to 
the z -direction, we could have saved some steps and perhaps spared some of the notation 
with the triple subscripts.  However, we want a more general result, one valid for cases 
where the axes are not fixed, or when different objects in the same problem have different 
axes.  For example, consider the turning bicycle, for which the two wheel axes will not be 
parallel, or a spinning top that precesses (wobbles).  Such cases will be considered in 
later on, and we will show the general case of the parallel axis theorem in anticipation of 
use for more general situations. 
 
The moment of inertia about the point S  is  
 
 

  
IS = dm(rS ,⊥ ,dm )2

body
∫ . (16.A.6) 

From (16.A.5) we have 
 

 

    

(rS ,⊥ ,dm )2 = rS ,⊥ ,dm ⋅
rS ,⊥ ,dm

= (rS ,⊥ ,cm + r⊥ ,dm ) ⋅ (rS ,⊥ ,cm + r⊥ ,dm )

= dS , cm
2 + (r⊥ , dm )2 + 2 rS ,⊥ ,cm ⋅ r⊥ ,dm.

 (16.A.7) 

 
Thus we have for the moment of inertia about S , 
 
 

    
IS = dm dS , cm

2

bo dy
∫ + dm(r⊥ ,dm )2

bo dy
∫ + 2 dm(rS ,⊥ , cm ⋅ r⊥ ,dm )

bo dy
∫ . (16.A.8) 

 
In the first integral in Equation (16.A.8), , ,cm ,cmS Sr d⊥ =  is the distance between the 
parallel axes and is a constant. Therefore we can rewrite the integral as  
 
 

  
dS ,cm

2 dm
body
∫ = m dS ,cm

2 . (16.A.9) 

 
The second term in Equation (16.A.8) is the moment of inertia about the axis through the 
center of mass,  
 

  
Icm = dm (r⊥ ,dm )2

bo dy
∫ . (16.A.10) 
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The third integral in Equation (16.A.8) is zero. To see this, note that the term , ,cmS ⊥r
  is a 

constant and may be taken out of the integral, 
 
 

    
2 dm (

rS ,⊥ , cm ⋅ r⊥ ,dm )
bo dy
∫ = rS ,⊥ , cm ⋅2 dm r⊥ ,dm

bo dy
∫  (16.A.11) 

 
The integral 

    
dm r⊥ ,dm

bo dy
∫  is the perpendicular component of the position of the center of 

mass with respect to the center of mass, and hence 0


, with the result that 
 
 

    
2 dm (

rS ,⊥ , cm ⋅ r⊥ ,dm )
bo dy
∫ = 0 . (16.A.12) 

 
Thus, the moment of inertia about S  is just the sum of the first two integrals in 
Equation (16.A.8) 
 

  
IS = Icm + mdS , cm

2 , (16.A.13) 
 
proving the parallel axis theorem. 


