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Chapter 20 Rigid Body: Translation and Rotational Motion 
Kinematics for Fixed Axis Rotation 

 
Hence I feel no shame in asserting that this whole region engirdled by the 
moon, and the center of the earth, traverse this grand circle amid the rest 
of the planets in an annual revolution around the sun. Near the sun is the 
center of the universe. Moreover, since the sun remains stationary, 
whatever appears as a motion of the sun is really due rather to the motion 
of the earth.1 
         Copernicus 

 
20.1 Introduction  
 
The general motion of a rigid body of mass  m  consists of a translation of the center of 
mass with velocity    


Vcm  and a rotation about the center of mass with all elements of the 

rigid body rotating with the same angular velocity   

ωcm . We prove this result in Appendix 

A. Figure 20.1 shows the center of mass of a thrown rigid rod follows a parabolic 
trajectory while the rod rotates about the center of mass. 
 

 
 

Figure 20.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while 
the rod rotates about the center of mass. 

 
20.2 Constrained Motion: Translation and Rotation 
 
We shall encounter many examples of a rolling object whose motion is constrained. For 
example we will study the motion of an object rolling along a level or inclined surface 
and the motion of a yo-yo unwinding and winding along a string. We will examine the 
constraint conditions between the translational quantities that describe the motion of the 
center of mass, displacement, velocity and acceleration, and the rotational quantities that 
describe the motion about the center of mass, angular displacement, angular velocity and 
angular acceleration. We begin with a discussion about the rotation and translation of a 
rolling wheel. 

                                                
1Nicolaus Copernicus, De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), 
Book 1 Chapter 10. 



 20-2 

 
 

Figure 20.2 Rolling Wheel 
  
Consider a wheel of radius  R  is rolling in a straight line (Figure 20.2). The center of 
mass of the wheel is moving in a straight line at a constant velocity    


Vcm . Let’s analyze 

the motion of a point  P  on the rim of the wheel.  
 
Let    
v P  denote the velocity of a point  P  on the rim of the wheel with respect to reference 

frame  O  at rest with respect to the ground (Figure 20.3a). Let    
 ′v P  denote the velocity of 

the point  P  on the rim with respect to the center of mass reference frame  Ocm  moving 
with velocity    


Vcm  with respect to at  O  (Figure 20.3b). (You should review the definition 

of the center of mass reference frame in Chapter 15.2.1.) We can use the law of addition 
of velocities (Eq.15.2.4) to relate these three velocities,  
 
    

v P =  ′v P +

Vcm . (20.2.1) 

 
Let’s choose Cartesian coordinates for the translation motion and polar coordinates for 
the motion about the center of mass as shown in Figure 20.3. 
 

  
(a)      (b) 

 
Figure 20.3 (a) reference frame fixed to ground, (b) center of mass reference frame 

 
The center of mass velocity in the reference frame fixed to the ground is given by 
 
  


Vcm = Vcm î . (20.2.2) 
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where Vcm  is the speed of the center of mass. The position of the center of mass in the 
reference frame fixed to the ground is given by 
 
  


Rcm (t) = (Xcm, 0 +Vcmt)î  , (20.2.3) 

 
where Xcm, 0  is the initial x -component of the center of mass at t = 0 . The angular 
velocity of the wheel in the center of mass reference frame is given by 
 
    


ω cm =ω cmk̂ . (20.2.4) 

 
where  ω cm  is the angular speed. The point  P  on the rim is undergoing uniform circular 
motion with the velocity in the center of mass reference frame given by 
 
  

 ′vP = Rω cmθ̂ . (20.2.5) 
 
If we want to use the law of addition of velocities then we should express  

 ′vP = Rω cmθ̂  in 
Cartesian coordinates. Assume that at t = 0 , θ(t = 0) = 0  i.e. the point  P  is at the top of 
the wheel at t = 0 . Then the unit vectors in polar coordinates satisfy (Figure 20.4)  
 

 
r̂ = sinθ î − cosθ ĵ 

θ̂ = cosθ î + sinθ ĵ
. (20.2.6) 

 
Therefore the velocity of the point  P  on the rim in the center of mass reference frame is 
given by 
  

 ′vP = Rω cmθ̂ = Rω cm (cosθ î − sinθ ĵ) . (20.2.7) 
 

 
 

Figure 20.4 Unit vectors 
 
Now substitute Eqs. (20.2.2) and (20.2.7) into Eq. (20.2.1) for the velocity of a point  P  
on the rim in the reference frame fixed to the ground 
 

 
    

v P = Rω cm (cosθ î + sinθ ĵ)+Vcm î

= (Vcm + Rω cm cosθ )î + Rω cm sinθ ĵ
. (20.2.8) 
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The point  P  is in contact with the ground when θ = π . At that instant the velocity of a 
point  P  on the rim in the reference frame fixed to the ground is 
 
     

v P (θ = π ) = (Vcm − Rωcm )î . (20.2.9) 
 
What velocity does the observer at rest on the ground measure for the point on the rim 
when that point is in contact with the ground? In order to understand the relationship 
between Vcm  and  ω cm , we consider the displacement of the center of mass for a small 
time interval  Δt  (Figure 20.5).  
 

 
 

Figure 20.5 Displacement of center of mass in ground reference frame. 
 
From Eq. (20.2.3) the x -component of the displacement of the center of mass is 
 
 ΔXcm=VcmΔt . (20.2.10) 
 
The point P  on the rim in the center of mass reference frame is undergoing circular 
motion (Figure 20.6). 

 
 

Figure 20.6: Small displacement of point on rim in center of mass reference frame. 
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In the center of mass reference frame, the magnitude of the tangential displacement is 
given by the arc length subtended by the angular displacement Δθ =ω cmΔt , 
 
 Δs = RΔθ = Rω cmΔt . (20.2.11) 

Case 1: if the x -component of the displacement of the center of mass is equal to the arc 
length subtended by Δθ , then the wheel is rolling without slipping or skidding, rolling 
without slipping for short, along the surface with  
 
 ΔXcm = Δs . (20.2.12) 
 
Substitute Eq. (20.2.10) and Eq. (20.2.11) into Eq. (20.2.12) and divide through by Δt . 
Then the rolling without slipping condition becomes  
 
   Vcm = Rω cm ,     (rolling without slipping) . (20.2.13) 
 
Case 2: if the x -component of the displacement of the center of mass is greater than the 
arc length subtended by Δθ , then the wheel is skidding along the surface with 
 
 ΔXcm > Δs . (20.2.14) 
 
Substitute Eqs. (20.2.10) and (20.2.11) into Eq. (20.2.14) and divide through by Δt , then  
 
   Vcm > Rω cm , (skidding) . (20.2.15) 
 
Case 3: if the x -component of the displacement of the center of mass is less than the arc 
length subtended by Δθ , then the wheel is slipping along the surface with 
 
 ΔXcm < Δs . (20.2.16) 
 
Arguing as above the slipping condition becomes  
 
   Vcm < Rω cm ,  (slipping) . (20.2.17) 
 
20.2.1 Rolling without slipping 
 
When a wheel is rolling without slipping, the velocity of a point  P  on the rim is zero 
when it is in contact with the ground. In Eq. (20.2.9) set θ = π , 
 
     

v P (θ = π ) = (Vcm − Rωcm )î = (Rωcm − Rωcm )î =

0 . (20.2.18) 

 
This makes sense because the velocity of the point  P  on the rim in the center of mass 
reference frame when it is in contact with the ground points in the opposite direction as 
the translational motion of the center of mass of the wheel. The two velocities have the 
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same magnitude so the vector sum is zero. The observer at rest on the ground sees the 
contact point on the rim at rest relative to the ground.  
 
Thus any frictional force acting between the tire and the ground on the wheel is static 
friction because the two surfaces are instantaneously at rest with respect to each other. 
Recall that the direction of the static frictional force depends on the other forces acting on 
the wheel. 
 
Example 20.1 Bicycle Wheel Rolling Without Slipping 
 
Consider a bicycle wheel of radius  R  that is rolling in a straight line without slipping. 
The velocity of the center of mass in a reference frame fixed to the ground is given by 
velocity  


Vcm . A bead is fixed to a spoke a distance b  from the center of the wheel 

(Figure 20.7). (a) Find the position, velocity, and acceleration of the bead as a function of 
time in the center of mass reference frame. (b) Find the position, velocity, and 
acceleration of the bead as a function of time as seen in a reference frame fixed to the 
ground.  

 
 

 
 

Figure 20.7 Example 20.1 
 

 
 

Figure 20.8 Coordinate system for bead 
in center of mass reference frame 

 
Solution: a) Choose the center of mass reference frame with an origin at the center of the 
wheel, and moving with the wheel. Choose polar coordinates (Figure 20.8). The  z -
component of the angular velocity   ω cm = dθ / dt > 0 . Then the bead is moving uniformly 
in a circle of radius  r = b  with the position, velocity, and acceleration given by 
 
      

′rb = b r̂,   ′vb = bω cm θ̂ , ′ab = −bω cm
2 r̂ . (20.2.19) 

 
Because the wheel is rolling without slipping, the velocity of a point on the rim of the 
wheel has speed   ′vP = Rω cm . This is equal to the speed of the center of mass of the wheel 

 Vcm , thus 
   Vcm = Rωcm . (20.2.20) 
 
Note that at   t = 0 , the angle  θ = θ0 = 0 . So the angle grows in time as 
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   θ(t) =ωcmt = (Vcm / R)t . (20.2.21) 
 
The velocity and acceleration of the bead with respect to the center of the wheel are then 
 

 
    
 ′vb =

bVcm

R
θ̂ , ′ab = −

bVcm
2

R2 r̂ . (20.2.22) 

 
b) Define a second reference frame fixed to the ground with choice of origin, Cartesian 
coordinates and unit vectors as shown in Figure 20.9.  
 

 
 

Figure 20.9 Coordinates of bead in reference frame fixed to ground 
 
Then the position vector of the center of mass in the reference frame fixed to the ground 
is given by  
     


Rcm(t) = Xcm î + R ĵ =Vcmt î + R ĵ . (20.2.23) 

 
The relative velocity of the two frames is the derivative 
 

 
 


Vcm =

d

Rcm

dt
=
dXcm
dt

î = Vcm î . (20.2.24) 

 
Because the center of the wheel is moving at a uniform speed the relative acceleration of 
the two frames is zero, 

 
    


Acm =

d

Vcm

dt
=

0 . (20.2.25) 

 
Define the position, velocity, and acceleration in this frame (with respect to the ground) 
by 
 
  
    
rb(t) = xb(t) î + yb(t) ĵ, vb(t) = vb,x (t) î + vb,y (t) ĵ, a(t) = ab,x (t) î + ab,y (t) ĵ .  (20.2.26) 

  
Then the position vectors are related by 
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rb(t) =

Rcm (t)+ ′rb(t) . (20.2.27) 

 
In order to add these vectors we need to decompose the position vector in the center of 
mass reference frame into Cartesian components, 
 
     

′rb(t) = b r̂(t) = bsinθ(t) î + bcosθ(t) ĵ . (20.2.28) 
 
Then using the relation   θ(t) = (Vcm / R)t , Eq. (20.2.28) becomes 
 

 
    

rb(t) =

Rcm (t)+ ′rb(t) = (Vcmt î + R ĵ)+ (bsinθ(t) î + bcosθ(t) ĵ)

= Vcmt + bsin((Vcm / R)t)( ) î + R + bcos((Vcm / R)t)( ) ĵ
. (20.2.29) 

 
Thus the position components of the bead with respect to the reference frame fixed to the 
ground are given by 
   xb(t) =Vcmt + bsin((Vcm / R)t)  (20.2.30) 

   yb(t) = R + bcos((Vcm / R)t) . (20.2.31) 
 
A plot of the  y -component vs. the  x -component of the position of the bead in the 
reference frame fixed to the ground is shown in Figure 20.10 below using the values 

  Vcm = 5 m ⋅ s-1 ,   R = 0.25 m , and   b = 0.125 m . This path is called a cycloid. We can 
differentiate the position vector in the reference frame fixed to the ground to find the 
velocity of the bead 
 

     
    
vb(t) =

drb

dt
(t) = d

dt
(Vcmt + bsin((Vcm / R)t)) î + d

dt
(R + bcos((Vcm / R)t) ) ĵ ,  (20.2.32) 

         
vb(t) = (Vcm + (b / R)V cos((Vcm / R)t)) î − ((b / R)Vcm sin((Vcm / R)t) ) ĵ . (20.2.33) 

 

 
Figure 20.10 Plot of the  y -component vs. the  x -component of the position of the bead 
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Alternatively, we can decompose the velocity of the bead in the center of mass reference 
frame into Cartesian coordinates 
 
     

 ′vb(t) = (b / R)Vcm (cos((Vcm / R)t) î − sin((Vcm / R)t) ĵ) . (20.2.34) 
 
The law of addition of velocities is then 
 
       

vb(t) =

Vcm +  ′vb(t) ,  (20.2.35) 

     
vb(t) =Vcm î + (b / R)Vcm (cos((Vcm / R)t) î − sin((Vcm / R)t) ĵ) , (20.2.36) 

     
vb(t) = (Vcm + (b / R)Vcm cos((Vcm / R)t)) î − (b / R)sin((Vcm / R)t) ĵ , (20.2.37) 

 
in agreement with our previous result. The acceleration is the same in either frame so 
 
     
ab(t) = ′ab = −(b / R2 )Vcm

2 r̂ = −(b / R2 )Vcm
2 (sin((Vcm / R)t) î + cos((Vcm / R)t) ĵ) .  (20.2.38) 

 
Example 20.2 Cylinder Rolling Without Slipping Down an Inclined Plane 
 
A uniform cylinder of outer radius R  and mass M  with moment of inertia about the 
center of mass   Icm = (1 / 2)M R2  starts from rest and rolls without slipping down an 
incline tilted at an angle β  from the horizontal. The center of mass of the cylinder has 
dropped a vertical distance h  when it reaches the bottom of the incline. Let g  denote the 
gravitational constant. What is the relation between the component of the acceleration of 
the center of mass in the direction down the inclined plane and the component of the 
angular acceleration into the page of Figure 20.11? 
 

 
 

Figure 20.11 Example 20.2 
 
Solution: We begin by choosing a coordinate system for the translational and rotational 
motion as shown in Figure 20.12. 
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Figure 20.12 Coordinate system for rolling cylinder 
 
For a time interval  Δt , the displacement of the center of mass is given by 

    Δ

Rcm(t) = ΔXcm î . The arc length due to the angular displacement of a point on the rim 

during the time interval  Δt  is given by  Δs = RΔθ . The rolling without slipping condition 
is  

 ΔXcm = RΔθ . 
 
If we divide both sides by  Δt  and take the limit as   Δt → 0  then the rolling without 
slipping condition show that the  x -component of the center of mass velocity is equal to 
the magnitude of the tangential component of the velocity of a point on the rim  
 

  
Vcm = lim

Δt→0

ΔXcm

Δt
= lim

Δt→0
R Δθ

Δt
= Rωcm . 

 
Similarly if we differentiate both sides of the above equation, we find a relation between 
the  x -component of the center of mass acceleration is equal to the magnitude of the 
tangential component of the acceleration of a point on the rim  
 

  
Acm =

dVcm

dt
= R

dωcm

dt
= Rαcm . 

 
Example 20.3 Falling Yo-Yo 
 
A Yo-Yo of mass m  has an axle of radius b  and a spool of radius R  (Figure 20.13a). Its 
moment of inertia about the center of mass can be taken to be   I = (1 / 2)mR2  (the 
thickness of the string can be neglected). The Yo-Yo is released from rest. What is the 
relation between the angular acceleration about the center of mass and the linear 
acceleration of the center of mass? 
  
Solution: Choose coordinates as shown in Figure 20.13b.   
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Figure 20.13a Example 20.3 

 

 
 

Figure 20.13b Coordinate system for 
Yo-Yo 

 
Consider a point on the rim of the axle at a distance  r = b  from the center of mass. As the 
yo-yo falls, the arc length  Δs = bΔθ  subtended by the rotation of this point is equal to 
length of string that has unraveled, an amount  Δl . In a time interval  Δt ,  bΔθ = Δl . 
Therefore   bΔθ / Δt = Δl / Δt . Taking limits, noting that,   

Vcm, y = dl / dt , we have that 

  
bωcm =Vcm, y . Differentiating a second time yields   

bαcm = Acm, y . 
 
Example 20.4 Unwinding Drum 
 
Drum  A  of mass  m  and radius  R  is suspended from a drum  B  also of mass  m  and 
radius  R , which is free to rotate about its axis. The suspension is in the form of a 
massless metal tape wound around the outside of each drum, and free to unwind (Figure 
20.14). Gravity acts with acceleration  g  downwards. Both drums are initially at rest. 
Find the initial acceleration of drum  A , assuming that it moves straight down.   
 

 
 

Figure 20.14 Example 20.4 
 
Solution: The key to solving this problem is to determine the relation between the three 
kinematic quantities  α A ,  α B , and  aA , the angular accelerations of the two drums and the 
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linear acceleration of drum  A . Choose the positive  y -axis pointing downward with the 
origin at the center of drum  B . After a time interval  Δt , the center of drum  A  has 
undergone a displacement  Δy . An amount of tape  ΔlA = RΔθA  has unraveled from drum 

 A , and an amount of tape  ΔlB = RΔθB  has unraveled from drum  B . Therefore the 
displacement of the center of drum  A  is equal to the total amount of tape that has 
unwound from the two drums,  Δy = ΔlA + ΔlB = RΔθA + RΔθB . Dividing through by  Δt  
and taking the limit as   Δt → 0  yields 
 

 
dy
dt

= R
dθA

dt
+ R

dθB

dt
. 

 
Differentiating a second time yields the desired relation between the angular 
accelerations of the two drums and the linear acceleration of drum  A , 
 

  
d 2 y
dt2 = R

d 2θA

dt2 + R
d 2θB

dt2  

  
aA, y = Rα A + Rα B . 

 
20.3 Angular Momentum for a System of Particles Undergoing 
Translational and Rotational  
 
We shall now show that the angular momentum of a body about a point S  can be 
decomposed into two vector parts, the angular momentum of the center of mass (treated 
as a point particle) about the point S , and the angular momentum of the rotational 
motion about the center of mass.  
 
Consider a system of N  particles located at the points labeled    i = 1,2,, N . The angular 
momentum about the point S  is the sum 
 

 
    


LS

total =

LS ,i

i=1

N

∑ = ( rS , i × mi
v i )

i=1

N

∑ , (20.3.1) 

  
where ,S ir

  is the vector from the point S  to the  ith  particle (Figure 20.15) satisfying 
 
 

    
rS , i =

rS , cm + rcm,i , (20.3.2) 

 
    
vS ,i =


Vcm + vcm,i , (20.3.3) 

where 
    
vS , cm =


Vcm . We can now substitute both Eqs. (20.3.2) and (20.3.3) into Eq. 

(20.3.1) yielding 

 
    


LS

total = (rS , cm + rcm,i ) × mi (

Vcm + vcm,i )

i=1

N

∑ . (20.3.4) 



 20-13 

 

 
 

Figure 20.15 Vector Triangle 
 
When we expand the expression in Equation (20.3.4), we have four terms, 
 

 

    


LS

total = (rS ,cm × mi
vcm,i )

i=1

N

∑ + (rS ,cm × mi


Vcm )

i=1

N

∑

+ (rcm,i × mi
vcm,i )

i=1

N

∑ + (rcm,i × mi


Vcm )

i=1

N

∑ .
 (20.3.5) 

 
The vector 

    
rS , cm  is a constant vector that depends only on the location of the center of 

mass and not on the location of the  ith  particle. Therefore in the first term in the above 
equation, 

    
rS , cm  can be taken outside the summation. Similarly, in the second term the 

velocity of the center of mass    

Vcm  is the same for each term in the summation, and may 

be taken outside the summation,  
 

 

    


LS

total = rS ,cm × mi
vcm,i

i=1

N

∑⎛⎝⎜
⎞
⎠⎟
+ rS ,cm × mi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

Vcm

+ (rcm,i × mi
vcm,i )

i=1

N

∑ + mi
rcm,i

i=1

N

∑⎛⎝⎜
⎞
⎠⎟
×

Vcm.

 (20.3.6) 

 
The first and third terms in Eq. (20.3.6) are both zero due to the fact that 
 

 

    

mi
rcm,i

i=1

N

∑ = 0

mi
vcm,i

i=1

N

∑ = 0.
 (20.3.7) 

We first show that 
    

mi
rcm,i

i=1

N

∑  is zero. We begin by using Eq. (20.3.2), 

 



 20-14 

 

    

(mi

rcm,i )
i=1

N

∑ = (mi(
ri −
rS ,cm ))

i=1

N

∑

= mi

ri
i=1

N

∑ − (mi )
i=1

N

∑⎛⎝⎜
⎞
⎠⎟
rS ,cm = mi

ri
i=1

N

∑ − mtotalrS ,cm.
 (20.3.8) 

 
Substitute the definition of the center of mass (Eq. 10.5.3) into Eq. (20.3.8) yielding 
 

 
    

(mi

rcm,i )
i=1

N

∑ = mi

ri
i=1

N

∑ − mtotal 1
mtotal

mi

ri
i=1

N

∑ =

0 . (20.3.9) 

 

The vanishing of 
    

mi
vcm,i

i=1

N

∑ = 0  follows directly from the definition of the center of mass 

frame, that the momentum in the center of mass is zero. Equivalently the derivative of 
Eq. (20.3.9) is zero. We could also simply calculate and find that 
 

 

    

mi
vcm,i

i
∑ = mi

i
∑ (v i −


Vcm )

= mi
i
∑ v i −


Vcm mi

i
∑

= mtotal

Vcm −


Vcmmtotal

=

0.

 (20.3.10) 

 
We can now simplify Eq. (20.3.6) for the angular momentum about the point  S  using the 

fact that, 
  
mT = mi

i=1

N

∑ , and 
    
psys = mT


Vcm  (in reference frame  O ): 

 

 
    


LS

total = rS , cm × psys + (rcm,i × mi
vcm,i )

i=1

N

∑ . (20.3.11) 

 
Consider the first term in Equation (20.3.11), 

    
rS ,cm × psys ; the vector ,cmSr

  is the vector 
from the point  S  to the center of mass. If we treat the system as a point-like particle of 
mass  mT  located at the center of mass, then the momentum of this point-like particle is 

    
psys = mT


Vcm . Thus the first term is the angular momentum about the point S  of this 

“point-like particle”, which is called the orbital angular momentum about S ,  
 
 

    

LS

orbital = rS ,cm × psys . (20.3.12) 
 
for the system of particles. 
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Consider the second term in Equation (20.3.11), 
    

(rcm,i × mi
vcm,i )

i=1

N

∑ ; the quantity inside 

the summation is the angular momentum of the  ith  particle with respect to the origin in 
the center of mass reference frame  Ocm  (recall the origin in the center of mass reference 
frame is the center of mass of the system), 
 
 

    

Lcm,i =

rcm,i × mi
vcm,i . (20.3.13) 

 
Hence the total angular momentum of the system with respect to the center of mass in the 
center of mass reference frame is given by  
 

 
    


Lcm

spin =

Lcm,i

i=1

N

∑ = (rcm,i × mi
vcm,i )

i=1

N

∑ . (20.3.14) 

 
a vector quantity we call the spin angular momentum. Thus we see that the total angular 
momentum about the point S  is the sum of these two terms, 
 
     


LS

total =

LS

orbital +

Lcm

spin . (20.3.15) 
 
This decomposition of angular momentum into a piece associated with the translational 
motion of the center of mass and a second piece associated with the rotational motion 
about the center of mass in the center of mass reference frame is the key conceptual 
foundation for what follows. 
 
Example 20.5 Earth’s Motion Around the Sun 
 
The earth, of mass 24

e 5.97 10 kgm = ×  and (mean) radius 6
e 6.38 10 mR = × , moves in a 

nearly circular orbit of radius 
  
rs,e = 1.50×1011 m  around the sun with a period 

orbit 365.25 daysT = , and spins about its axis in a period spin 23 hr 56 minT = , the axis 
inclined to the normal to the plane of its orbit around the sun by 23.5°  (in Figure 20.16, 
the relative size of the earth and sun, and the radius and shape of the orbit are not 
representative of the actual quantities).  
 

 
 

Figure 20.16 Example 20.5  
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If we approximate the earth as a uniform sphere, then the moment of inertia of the earth 
about its center of mass is 

 2
cm e e

2
5

I m R= . (20.3.16) 

 
If we choose the point S  to be at the center of the sun, and assume the orbit is circular, 
then the orbital angular momentum is 
 
 

    

LS

orbital = rS ,cm × psys = rs,e r̂ × mevcm θ̂ = rs,emevcm k̂ . (20.3.17) 
 
The velocity of the center of mass of the earth about the sun is related to the orbital 
angular velocity by 
 cm s,e orbitv r ω= , (20.3.18) 
where the orbital angular speed is  
 

 

  

ωorbit =
2π
Torbit

=
2π

(365.25 d)(8.640 ×104 s ⋅d−1)

= 1.991×10−7 rad ⋅ s−1.

 (20.3.19) 

 
The orbital angular momentum about S  is then 
 

 

    


LS

orbital = me rs,e
2 ωorbit k̂

= (5.97 ×1024 kg)(1.50 ×1011 m)2(1.991×10−7 rad ⋅ s−1) k̂
= (2.68 ×1040 kg ⋅m2 ⋅ s−1) k̂.

 (20.3.20) 

 
The spin angular momentum is given by 
 

 
    


Lcm

spin = Icm


ω spin = 2

5
me Re

2ω spin n̂ , (20.3.21) 

 
where n̂  is a unit normal pointing along the axis of rotation of the earth and  
 

 5 1
spin 4

spin

2 2 7.293 10 rad s
8.616 10 sT

π πω − −= = = × ⋅
×

. (20.3.22) 

 
The spin angular momentum is then 
 

 

   


Lcm

spin = 2
5

(5.97 ×1024 kg)(6.38 ×106 m)2(7.293×10−5 rad ⋅ s−1) n̂

= (7.10 ×1033 kg ⋅m2 ⋅ s−1) n̂.
 (20.3.23) 
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The ratio of the magnitudes of the orbital angular momentum about S  to the spin angular 
momentum is greater than a million, 
 

 
2 2orbital

e s,e orbit s,e spin 6
spin 2 2
cm e e spin e orbit

5
3.77 10

(2 /5) 2
S m r r TL
L m R R T

ω
ω

= = = × , (20.3.24) 

 
as this ratio is proportional to the square of the ratio of the distance to the sun to the 
radius of the earth. The angular momentum about S  is then 
 

 total 2 2
e s,e orbit e e spin

2ˆ ˆ
5S m r m Rω ωL = k + n


. (20.3.25) 

 
The orbit and spin periods are known to far more precision than the average values used 
for the earth’s orbit radius and mean radius. Two different values have been used for one 
“day;” in converting the orbit period from days to seconds, the value for the solar day, 
solar 86,400sT =  was used.  In converting the earth’s spin angular frequency, the sidereal 

day, sidereal spin 86,160sT T= =  was used.  The two periods, the solar day from noon to noon 
and the sidereal day from the difference between the times that a fixed star is at the same 
place in the sky, do differ in the third significant figure.   
 
20.4 Kinetic Energy of a System of Particles 
 
Consider a system of particles. The   ith  particle has mass  mi  and velocity iv

  with respect 
to a reference frame  O . The kinetic energy of the system of particles is given by 
 

 

    

K = 1
2

mi vi
2

i
∑ = 1

2
mi
v i ⋅
v i

i
∑

= 1
2

mi (
vcm,i +


Vcm ) ⋅(vcm,i +


Vcm )

i
∑ .

 (20.4.1) 

 
where Equation 15.2.6 has been used to express iv

  in terms of  
    
vcm,i  and cmV


. Expanding 

the last dot product in Equation (20.4.1), 
 

 

    

K = 1
2

mi (
vcm,i ⋅

v i, rel +

Vcm ⋅


Vcm + 2 vcm,i ⋅


Vcm )

i
∑

= 1
2

mi
i
∑ (vcm,i ⋅

v i, rel )+
1
2

mi
i
∑ (


Vcm ⋅


Vcm )+ mi

vcm,i ⋅

Vcm

i
∑

= 1
2

mi
i
∑ vcm,i

2 + 1
2

mi
i
∑ Vcm

2 + m
i
∑ vcm,i

⎛
⎝⎜

⎞
⎠⎟
⋅

Vcm.

 (20.4.2) 
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The last term in the third equation in (20.4.2) vanishes as we showed in Eq. (20.3.7). 
Then Equation (20.4.2) reduces to 
 

 

  

K =
1
2

mi
i
∑ vcm,i

2 +
1
2

mi
i
∑ Vcm

2

=
1
2

mi
i
∑ vcm,i

2 +
1
2

mtotal Vcm
2 .

 (20.4.3) 

 
We interpret the first term as the kinetic energy of the center of mass motion in reference 
frame  O  and the second term as the sum of the individual kinetic energies of the particles 
of the system in the center of mass reference frame   Ocm .  
 
At this point, it’s important to note that no assumption was made regarding the mass 
elements being constituents of a rigid body.  Equation (20.4.3) is valid for a rigid body, a 
gas, a firecracker (but K  is certainly not the same before and after detonation), and the 
sixteen pool balls after the break, or any collection of objects for which the center of 
mass can be determined. 
 
20.5 Rotational Kinetic Energy for a Rigid Body Undergoing Fixed Axis 
Rotation  
 
The rotational kinetic energy for the rigid body, using 

    
vcm, i = (rcm, i )⊥ωcm θ̂ , simplifies to 

 

 
  
Krot =

1
2

Icmωcm
2 . (20.5.1) 

 
Therefore the total kinetic energy of a translating and rotating rigid body is  
 

 
  
K total = K trans + Krot =

1
2

mVcm
2 +

1
2

Icmωcm
2 . (20.5.2) 
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Appendix 20A Chasles’s Theorem: Rotation and Translation of a Rigid 
Body 

 
We now return to our description of the translating and rotating rod that we first 
considered when we began our discussion of rigid bodies.  We shall now show that the 
motion of any rigid body consists of a translation of the center of mass and rotation about 
the center of mass. 
 
We shall demonstrate this for a rigid body by dividing up the rigid body into point-like 
constituents. Consider two point-like constituents with masses 1m  and 2m . Choose a 
coordinate system with a choice of origin such that body 1 has position    

r1  and body 2  
has position    

r2  (Figure 20A.1). The relative position vector is given by 
 
 

   
r1,2 =

r1 −
r2 . (20.A.1) 

 
 

Figure 20A.1 Two-body coordinate system. 
 
Recall we defined the center of mass vector,    


Rcm , of the two-body system as 

 

 
    


Rcm =

m1

r1 + m2

r2

m1 + m2

. (20.A.2) 

 
In Figure 20A.2 we show the center of mass coordinate system.  
 

 
Figure 20A.2 Position coordinates with respect to center of mass  



 20-20 

 
The position vector of the object 1 with respect to the center of mass is given by 
 

 
    

rcm,1 =
r1 −

Rcm = r1 −

m1

r1 + m2

r2

m1 + m2

=
m2

m1 + m2

(r1 −
r2 ) =

µ
m1

r1,2 , (20.A.3) 

where 

 1 2

1 2

mm
m m

µ =
+

, (20.A.4) 

 
is the reduced mass. In addition, the relative position vector between the two objects is 
independent of the choice of reference frame, 
 
 

   
r12 =

r1 −
r2 = (rcm,1 +


Rcm ) − (rcm,2 +


Rcm ) = rcm,1 −

rcm,2 =
rcm,1,2 . (20.A.5) 

 
Because the center of mass is at the origin in the center of mass reference frame,  
 

 
    

m1

rcm,1 + m2

rcm,2

m1 + m2

=

0 . (20.A.6) 

Therefore  
 

    
m1

rcm,1 = −m2

rcm,2  (20.A.7) 

 
    
m1

rcm,1 = m2

rcm,2 . (20.A.8) 

 
The displacement of object 1 about the center of mass is given by taking the derivative of 
Eq. (20.A.3), 

 
    
drcm,1 =

µ
m1

dr1,2 . (20.A.9) 

 
A similar calculation for the position of object 2 with respect to the center of mass yields 
for the position and displacement with respect to the center of mass 
 

 
    

rcm,2 =
r2 −

Rcm = −

µ
m2

r1,2 , (20.A.10) 

 
    
drcm,2 = −

µ
m2

dr1,2 . (20.A.11) 

 
Let   i = 1,2 . An arbitrary displacement of the  ith  object is given respectively by 
 
 

    
dri = drcm,i + d


Rcm , (20.A.12) 
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which is the sum of a displacement about the center of mass 
    
drcm,i  and a displacement of 

the center of mass     d

Rcm . The displacement of objects 1 and 2 are constrained by the 

condition that the distance between the objects must remain constant since the body is 
rigid. In particular, the distance between objects 1 and 2 is given by 
 

 
   
r1,2

2
= (r1 −

r2 ) ⋅ (r1 −
r2 ) . (20.A.13) 

 
Because this distance is constant we can differentiate Eq. (20.A.13), yielding the rigid 
body condition that 
 

    
0 = 2(r1 −

r2 ) ⋅ (dr1 − dr2 ) = 2r1,2 ⋅ d
r1,2  (20.A.14) 

 
20A.1. Translation of the Center of Mass 
 
The condition (Eq. (20.A.14)) can be satisfied if the relative displacement vector between 
the two objects is zero,  
 

    
dr1,2 = dr1 − dr2 =


0 . (20.A.15) 

 
This implies, using, Eq. (20.A.9) and Eq. (20.A.11), that the displacement with respect to 
the center of mass is zero, 
 

    
drcm,1 = drcm,2 =


0 . (20.A.16) 

 
Thus by Eq. (20.A.12), the displacement of each object is equal to the displacement of 
the center of mass,  
     d

ri = d

Rcm , (20.A.17) 

 
which means that the body is undergoing pure translation. 
 
20A.2 Rotation about the Center of Mass 
 
Now suppose that 

    
dr1,2 = dr1 − dr2 ≠


0 . The rigid body condition can be expressed in 

terms of the center of mass coordinates. Using Eq. (20.A.9), the rigid body condition (Eq. 
(20.A.14)) becomes 

 
    
0 = 2

µ
m1

r1,2 ⋅ d
rcm,1 . (20.A.18) 

 
Because the relative position vector between the two objects is independent of the choice 
of reference frame (Eq. (20.A.5)), the rigid body condition Eq. (20.A.14) in the center of 
mass reference frame is then given by 
 
 

    
0 = 2rcm,1,2 ⋅ d

rcm,1 . (20.A.19) 
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This condition is satisfied if the relative displacement is perpendicular to the line passing 
through the center of mass, 
 

    
rcm,1,2 ⊥ drcm,1 . (20.A.20) 

 
By a similar argument, 

    
rcm,1,2 ⊥ drcm,2 . In order for these displacements to correspond to a 

rotation about the center of mass, the displacements must have the same angular 
displacement.  

 
 

Figure 20A.3 Infinitesimal angular displacements in the center of mass reference frame 
 
In Figure 20A.3, the infinitesimal angular displacement of each object is given by  
 

 
    
dθ1 =

drcm,1
rcm,1

, (20.A.21) 

 
    
dθ2 =

drcm,2
rcm,2

. (20.A.22) 

 
From Eq. (20.A.9) and Eq. (20.A.11), we can rewrite Eqs. (20.A.21) and (20.A.22) as 
 

 
    
dθ1 =

µ
m1

dr1,2
rcm,1

, (20.A.23) 

 
    
dθ2 =

µ
m2

dr1,2
rcm,2

. (20.A.24) 

 
 
Recall that in the center of mass reference frame 

    
m1

rcm,1 = m2

rcm,2   (Eq. (20.A.8)) 

and hence the angular displacements are equal, 
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 1 2d d dθ θ θ= = . (20.A.25) 
 
Therefore the displacement of the  ith  object idr

  differs from the displacement of the 
center of mass     d


Rcm  by a vector that corresponds to an infinitesimal rotation in the center 

of mass reference frame 
 

    
dri = d


Rcm + drcm,i . (20.A.26) 

 
We have shown that the displacement of a rigid body is the vector sum of the 
displacement of the center of mass (translation of the center of mass) and an infinitesimal 
rotation about the center of mass.  
 
 
 
 
 


