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Chapter 27 Static Fluids 
 

27.1 Introduction 
 
Water is everywhere around us, covering 71% of the Earth’s surface. The water content 
of a human being can vary between 45% and 70 % of body weight. Water can exist in 
three states of matter: solid (ice), liquid, or gas. Water flows through many objects: 
through rivers, streams, aquifers, irrigation channels, and pipes to mention a few. 
Humans have tried to control and harness this flow through many different technologies 
such as aqueducts, Archimedes’ screw, pumps, and water turbines. Water in the gaseous 
state also flows. Water vapor, lighter than air, can cause convection currents that form 
clouds. In the liquid state, the density of water molecules is greater than the gaseous state 
but in both states water can flow. Liquid water forms a surface while water vapor does 
not. Water in both the liquid and gaseous state is classified as a fluid to distinguish it from 
the solid state. There is some ambiguity in the use of the term fluid. Ice flows in a glacier 
but very slowly. So for a short time interval compared to the time interval involved in the 
flow, glacial ice can be thought of as a solid.  In ordinary language, the term fluid is used 
to describe the liquid state of matter but a fluid is any state of matter that flows when 
there is an applied shear stress. The viscosity of a fluid is a measure of its resistance to 
gradual deformation by shear stress or tensile stress.  
 

27.2 Density 
 
The density of a small amount of matter is defined to be the amount of mass  ΔM  divided 
by the volume  ΔV  of that element of matter, 
 
   ρ = ΔM / ΔV  . (27.2.1) 
 
The SI unit for density is the kilogram per cubic meter,  kg ⋅m−3 . If the density of a 
material is the same at all points, then the density is given by 
 
   ρ = M / V  , (27.2.2) 
 
where  M  is the mass of the material and  V  is the volume of material. A material with 
constant density is called homogeneous. For a homogeneous material, density is an 
intrinsic property. If we divide the material in two parts, the density is the same in both 
parts, 
  ρ = ρ1 = ρ2  . (27.2.3) 
 
However mass and volume are extrinsic properties of the material. If we divide the 
material into two parts, the mass is the sum of the individual masses 
 
   M = M1 + M2  , (27.2.4) 
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as is the volume 
   V =V1 +V2  . (27.2.5) 
 
The density is tabulated for various materials in Table 27.1. 
 

Table 27.1: Density for Various Materials (Unless otherwise noted, all densities given 
are at standard conditions for temperature and pressure, that is, 273.15 K (0.00 °C) and 

100 kPa (0.987 atm). 
 

Material 
Density, ρ  

 kg ⋅m−3  
Helium  0.179  
Air (at sea 
level)  1.20  
Styrofoam  75  
Wood 
Seasoned, 
typical 

 0.7 ×103  

Ethanol  0.81×103  
Ice  0.92×103

 
Water  1.00×103  
Seawater  1.03×103  
Blood  1.06×103

 
Aluminum  2.70×103

 
Iron  7.87 ×103

 
Copper  8.94×103

 
Lead  11.34×103

 
Mercury  13.55×103  
Gold  19.32×103  
Plutonium  19.84×103  
Osmium  22.57 ×103  

 
 

27.3 Pressure in a Fluid 
 
When a shear force is applied to the surface of fluid, the fluid will undergo flow. When a 
fluid is static, the force on any surface within fluid must be perpendicular (normal) to 
each side of that surface. This force is due to the collisions between the molecules of the 
fluid on one side of the surface with molecules on the other side. For a static fluid, these 
forces must sum to zero. Consider a small portion of a static fluid shown in Figure 27.1. 
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That portion of the fluid is divided into two parts, which we shall designate 1 and 2, by a 
small mathematical shared surface element  S  of area  AS . The force 

    

F1,2 (S)  on the 

surface of region 2 due to the collisions between the molecules of 1 and 2 is 
perpendicular to the surface.  

 
 

Figure 27.1: Forces on a surface within a fluid 
 
The force 

    

F2,1(S)  on the surface of region 1 due to the collisions between the molecules 

of 1 and 2 by Newton’s Third Law satisfies 
 
 

    

F1,2 (S) = −


F2,1(S)  . (27.3.1) 

 
Denote the magnitude of these forces that form this interaction pair by 
 
 

    
F⊥ (S) =


F1,2 (S) =


F2,1(S)  . (27.3.2) 

 
Define the hydrostatic pressure at those points within the fluid that lie on the surface  S  
by 
 

 
  
P ≡

F⊥ (S)
AS

 . (27.3.3) 

 
The pressure at a point on the surface  S  is the limit  
 

 
  
P = lim

AS→0

F⊥ (S)
AS

 . (27.3.4) 

 
The SI units for pressure are  N ⋅m−2  and is called the pascal (Pa), where 
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  1 Pa = 1 N ⋅m−2 = 10−5 bar  . (27.3.5) 
 
Atmospheric pressure at a point is the force per unit area exerted on a small surface 
containing that point by the weight of air above that surface. In most circumstances 
atmospheric pressure is closely approximated by the hydrostatic pressure caused by the 
weight of air above the measurement point. On a given surface area, low-pressure areas 
have less atmospheric mass above their location, whereas high-pressure areas have more 
atmospheric mass above their location. Likewise, as elevation increases, there is less 
overlying atmospheric mass, so that atmospheric pressure decreases with increasing 
elevation. On average, a column of air one square centimeter in cross-section, measured 
from sea level to the top of the atmosphere, has a mass of about 1.03 kg and weight of 
about 10.1 N. (A column one square inch in cross-section would have a weight of about 
14.7 lbs, or about 65.4 N). The standard atmosphere  [atm]  is a unit of pressure such 
that  
  1atm = 1.01325×105 Pa = 1.01325 bar . (27.3.6) 
 

27.4 Pascal’s Law: Pressure as a Function of Depth in a Fluid of 
Uniform Density in a Uniform Gravitational Field 
 
Consider a static fluid of uniform density ρ . Choose a coordinate system such that the  z -
axis points vertical downward and the plane   z = 0  is at the surface of the fluid. Choose an 
infinitesimal cylindrical volume element of the fluid at a depth  z , cross-sectional area  A  
and thickness  dz  as shown in Figure 27.3. The volume of the element is  dV = A dz  and 
the mass of the fluid contained within the element is  dm = ρA dz .  
 

 
 

Figure 27.2: Coordinate system for fluid 
 
The surface of the infinitesimal fluid cylindrical element has three faces, two caps and the 
cylindrical body. Because the fluid is static the force due to the fluid pressure points 
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inward on each of these three faces. The forces on the cylindrical surface add to zero. On 
the end-cap at  z , the force due to pressure of the fluid above the end-cap is downward, 

    

F(z) = F(z)k̂ , where   F(z)  is the magnitude of the force. On the end-cap at  z + dz , the 
force due to the pressure of the fluid below the end-cap is upward, 

    

F(z + dz) = −F(z + dz)k̂ , where   F(z + dz)  is the magnitude of the force. The 
gravitational force acting on the element is given by 

    

Fg = (dm)gk̂ = (ρdV )gk̂ = ρA dz gk̂ . There are also radial inward forces on the 
cylindrical body which sum to zero. The free body force diagram on the element is shown 
in Figure 27.3.  
 

 
 

Figure 27.3: Free-body force diagram on cylindrical fluid element 
 
The vector sum of the forces is zero because the fluid is static (Newton’s Second Law). 
Therefore in the   +k̂ -direction 
 
   F(z)− F(z + dz)+ ρAdzg = 0  . (27.4.1) 
 
We divide through by the area  A  of the end-cap and use Eq. (27.3.4) to rewrite  
Eq. (27.4.1) in terms of the pressure  
 
   P(z)− P(z + dz)+ ρdzg = 0  . (27.4.2) 
Rearrange Eq. (27.4.2) as 

 
  
P(z + dz)− P(z)

dz
= ρg  . (27.4.3) 

 
Now take the limit of Eq. (27.4.3) as the thickness of the element   dz → 0 ,  
 

 
  
lim
dz→0

P(z + dz)− P(z)
dz

= ρg  . (27.4.4) 

 
resulting in the differential equation 

 
 
dP
dz

= ρg . (27.4.5) 

 
Integrate Eq. (27.4.5),  
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dP
P( z=0)

P( z )

∫ = ρg d ′z
′z =0

′z =z

∫ . (27.4.6) 

 
Performing the integrals on both sides of Eq. (27.4.6) describes the change in pressure 
between a depth  z  and the surface of a fluid  
 
   P(z)− P(z = 0) = ρgz (Pascal's Law) , (27.4.7) 
 
a result known as Pascal’s Law.  
 

Example 27.1 Pressure in the Earth’s Ocean 
 
What is the change in pressure between a depth of  4 km  and the surface in Earth’s 
ocean? 
 
Solution: We begin by assuming the density of water is uniform in the ocean, and so we 
can use Pascal’s Law, Eq. (27.4.7) to determine the pressure, where we use 

 ρ = 1.03×103 kg ⋅m−3  for the density of seawater (Table 27.1). Then 
 

 

  

P(z)− P(z = 0) = ρgz
= (1.03×103kg ⋅m−3)(9.8 m ⋅s−2 )(4×103 m)
= 40×106 Pa.

 (27.4.8) 

 

Example 27.2 Pressure in a Rotating Sample in a Centrifuge  
 
In an ultra centrifuge, a liquid filled chamber is spun with a high angular speed ω  about 
a fixed axis. The density ρ  of the fluid is uniform. The open-ended side of the chamber 
is a distance   r0  from the fixed axis. The chamber has cross sectional area  A  and of 
length  L ,  (Figure 27.4).  

 
 

Figure 27.4: Schematic representation of centrifuge 
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The chamber is spinning fast enough to ignore the effect of gravity. Determine the 
pressure in the fluid as a function of distance  r  from the fixed axis.  
 
Solution: Choose polar coordinates in the plane of circular motion. Consider a small 
volume element of the fluid of cross-sectional area  A , thickness  dr , and mass 
 dM = ρAdr  that is located a distance  r  from the fixed axis. Denote the pressure at one 
end of the volume element by   P(r) = F(r) / A  and the pressure at the other end by  

  P(r + dr) = F(r + dr) / A .  The free-body force diagram on the volume fluid element is 
shown in Figure 27.5.  
 

 
 

Figure 27.5: Free-body force diagram showing only radial forces on fluid element in 
centrifuge 

 
The element is accelerating inward with radial component of the acceleration,   ar = −rω 2 . 
Newton’s Second Law applied to the fluid element is then 
 
   (P(r)− P(r + dr))A = −(ρAdr)rω 2 , (27.4.9) 
 
We can rewrite Eq. (27.4.9) as 
 

 
  
P(r + dr)− P(r)

dr
= ρrω 2 , (27.4.10) 

 
and take the limit   dr → 0  resulting in 
 

 
  
dP
dr

= ρrω 2 . (27.4.11) 

 
We can integrate Eq. (27.4.11) between an arbitrary distance  r  from the rotation axis and 
the open-end located at   r0 , where the pressure   P(r0 ) = 1atm , 
 

 
  

dP
P(r )

P(r0 )

∫ = ρω 2 ′r d ′r
′r =r

′r =r0

∫ . (27.4.12) 
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Integration yields 

 
  
P(r0 )− P(r) = 1

2
ρω 2(r0

2 − r 2 ) . (27.4.13) 

 
The pressure at a distance  r  from the rotation axis is then 
 

 
  
P(r) = P(r0 )+ 1

2
ρω 2(r 2 − r0

2 ) . (27.4.14) 

 

27.5 Compressibility of a Fluid 
 
When the pressure is uniform on all sides of an object in a fluid, the pressure will squeeze 
the object resulting in a smaller volume. When we increase the pressure by  ΔP  on a 
material of volume   V0 , then the volume of the material will change by   ΔV < 0  and 
consequently the density of the material will also change. Define the bulk stress by the 
increase in pressure change  
  σ B ≡ ΔP  . (27.5.1) 
 
Define the bulk strain by the ratio 

 
  
ε B ≡ ΔV

V0

 . (27.5.2) 

 
For many materials, for small pressure changes, the bulk stress is linearly proportional to 
the bulk strain, 

 
  
ΔP = −B ΔV

V0

 , (27.5.3) 

 
where the constant of proportionality  B  is called the bulk modulus. The SI unit for bulk 
modulus is the pascal. If the bulk modulus of a material is very large, a large pressure 
change will result in only a small volume change. In that case the material is called 
incompressible. In Table 27.2, the bulk modulus is tabulated for various materials. 
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Table 27.2 Bulk Modulus for Various Materials 
 

Material Bulk Modulus, Y, (Pa) 
Diamond  4.4×1011  
Iron  1.6×1011  
Nickel  1.7 ×1011

 
Steel  1.6×1011

 
Copper  1.4×1011

 
Brass  6.0×1010

 
Aluminum  7.5×1010

 
Crown Glass  5.0×1010

 
Lead  4.1×1010

 
Water (value increases 
at higher pressure)  2.2×109

 

Air (adiabatic bulk 
modulus)  1.42×105

 

Air (isothermal bulk 
modulus) 

 1.01×105
 

 
 

Example 27.3 Compressibility of Water 
 
Determine the percentage decrease in a fixed volume of water at a depth of 4 km where 
the pressure difference is  40 MPa , with respect to sea level. 
 
Solution: The bulk modulus of water is  2.2×109 Pa . From Eq. (27.5.3), 
 

 
  

ΔV
V0

= − ΔP
B

= − 40×106 Pa
2.2×109 Pa

= −0.018 ; (27.5.4) 

 
there is only a 1.8% decrease in volume. Water is essentially incompressible even at great 
depths in ocean, justifying our assumption that the density of water is uniform in the 
ocean in Example 27.1.  
 

27.6 Archimedes’ Principle: Buoyant Force 
 
When we place a piece of solid wood in water, the wood floats on the surface. The 
density of most woods is less than the density of water, and so the fact that wood floats 
does not seem so surprising. However, objects like ships constructed from materials like 
steel that are much denser than water also float. In both cases, when the floating object is 
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at rest, there must be some other force that exactly balances the gravitational force. This 
balancing of forces also holds true for the fluid itself.  
 
Consider a static fluid with uniform density  

ρ f . Consider an arbitrary volume element of 

the fluid with volume  V  and mass  
mf = ρ fV . The gravitational force acts on the volume 

element, pointing downwards, and is given by 
    

Fg = −ρ fV g k̂ , where   k̂  is a unit vector 

pointing in the upward direction. The pressure on the surface is perpendicular to the 
surface (Figure 27.6). Therefore on each area element of the surface there is a 
perpendicular force on the surface.  
 

 
 

Figure 27.6: Forces due to pressure on 
surface of arbitrary volume fluid element 

 
 
 

 

 

 
 
 
 
 

Figure 27.7: Free-body force diagram 
on volume element showing 

gravitational force and buoyant force

Let    

FB  denote the resultant force, called the buoyant force, on the surface of the volume 

element due to the pressure of the fluid. The buoyant force must exactly balance the 
gravitational force because the fluid is in static equilibrium (Figure 27.7), 
 
 

    

0 =

FB +


Fg =


FB − ρ fV g k̂ .  (27.6.1) 

  
Therefore the buoyant force is therefore 
 
 

    

FB = ρ fV g k̂ .  (27.6.2) 

 
The buoyant force depends on the density of the fluid, the gravitational constant, and the 
volume of the fluid element. This macroscopic description of the buoyant force that 
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results from a very large number of collisions of the fluid molecules is called 
Archimedes’ Principle.  
 
We can now understand why when we place a stone in water it sinks. The density of the 
stone is greater than the density of the water, and so the buoyant force on the stone is less 
than the gravitational force on the stone and so it accelerates downward.  
 
Place a uniform object of volume  V  and mass  M  with density

 
  ρo = M / V  within a fluid. 

If the density of the object is less than the density of the fluid, 
 
ρo < ρ f , the object will 

float on the surface of the fluid. A portion of the object that is a beneath the surface, 
displaces a volume   V1  of the fluid. The portion of the object that is above the surface 
displaces a volume   V2 =V −V1  of air (Figure 27.8).  
 

 
 

Figure 27.8: Floating object on surface of fluid 
 
Because the density of the air is much less that the density of the fluid, we can neglect the 
buoyant force of the air on the object. 
 

 
 

Figure 27.9: Free-body force diagram on floating object 
 
The buoyant force of the fluid on the object, 

    

Ff ,o

B = ρ fV1gk̂ , must exactly balance the 

gravitational force on the object due to the earth, 
    

Fe,o

g  (Figure 27.9),  
 
 

    

0 =

Ff ,o

B +

Fe,o

g = ρ fV1 g k̂ − ρoV g k̂ = ρ fV1 g k̂ − ρo(V1 +V2 ) g k̂ .  (27.6.3) 
 
Therefore the ratio of the volume of the exposed and submerged portions of the object 
must satisfy 
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ρ fV1 = ρo(V1 +V2 ) .  (27.6.4) 

 
We can solve Eq. (27.6.4) and determine the ratio of the volume of the exposed and 
submerged portions of the object 

 
  

V2

V1

=
(ρ f − ρo )

ρo

.  (27.6.5) 

 
We now also can understand why a ship of mass  M  floats. The more dense steel 
displaces a volume of water  Vs  but a much larger volume of water  Vw  is displaced by air. 
The buoyant force on the ship is then  
 
 

    

Fs

B = ρ f (Vs +Vw ) g k̂ .  (27.6.6) 
 
If this force is equal in magnitude to  Mg , the ship will float.  
 

Example 27.4 Archimedes’ Principle: Floating Wood 
 
Consider a beaker of uniform cross-sectional area  A , filled with water of density  ρw .  
When a rectangular block of wood of cross sectional area 2A , height, and mass  Mb  is 
placed in the beaker, the bottom of the block is at an unknown depth z  below the surface 
of the water. (a) How far below the surface z  is the bottom of the block? (b) How much 
did the height of the water in the beaker rise when the block was placed in the beaker? 
 
Solution: We neglect the buoyant force due to the displaced air because it is negligibly 
small compared to the buoyant force due to the water. The beaker, with the floating block 
of wood, is shown in Figure 27.10.  
 

 
 

Figure 27.10 Block of wood floating in a beaker of water 
 
(a) The density of the block of wood is   ρb = Mb / Vb = Mb / Abh . The volume of the 
submerged portion of the wood is   V1 = Abz . The volume of the block above the surface is 
given by   V2 = Ab(h− z) . We can apply Eq. (27.6.5), and determine that  
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V2

V1

=
Ab(h− z)

Abz
= (h− z)

z
=

(ρw − ρb )
ρb

.  (27.6.7) 

 
We can now solve Eq. (27.6.7) for the depth z  of the bottom of the block 
 

 
  
z =

ρb

ρw

h =
( Mb / Abh)

ρw

h =
Mb

ρw Ab

.  (27.6.8) 

 
(b) Before the block was placed in the beaker, the volume of water in the beaker is 

 Vw = Asi , where  si  is the initial height of water in the beaker. When the wood is floating 
in the beaker, the volume of water in the beaker is equal to  

Vw = Asf − Abz , where  
s f  is 

the final height of the water, in the beaker and  Abz  is the volume of the submerged 
portion of block. Because the volume of water has not changed 
 
  

Asi = Asf − Abz .  (27.6.9) 
 
We can solve Eq. (27.6.9) for the change in height of the water  

Δs = s f − si , in terms of 
the depth z  of the bottom of the block, 
 

 
 
Δs = s f − si =

Ab

A
z .  (27.6.10) 

 
We now substitute Eq. (27.6.8) into Eq. (27.6.10) and determine the change in height of 
the water 

 
 
Δs = s f − si =

Mb

ρw A
.  (27.6.11) 

 

Example 27.5 Rock Inside a Floating Salad Bowl 
 
A rock of mass rm  and density rρ  is placed in a salad bowl of mass bm . The salad bowl 
and rock float in a beaker of water of density wρ .  The beaker has cross sectional area A . 
The rock is then removed from the bowl and allowed to sink to the bottom of the beaker. 
Does the water level rise or fall when the rock is dropped into the water?  
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Figure 27.11: Rock in a floating salad bowl 
 
Solution: When the rock is placed in the floating salad bowl, a volume  V  of water is 
displaced. The buoyant force     


FB = ρwVgk̂  balances the gravitational force on the rock 

and salad bowl, 
   (mr + mb)g = ρwVg = ρw(V1 +V2 )g .  (27.6.12) 
 
where   V1  is the portion of the volume of displaced water that is necessary to balance just 
the gravitational force on the rock,   mr g = ρwV1g , and   V2  is the portion of the volume of 
displaced water that is necessary to balance just the gravitational force on the bowl, 

  mbg = ρwV2 g , Therefore   V1  must satisfy the condition that   V1 = mr g / ρw . The volume of 
the rock is given by   Vr = mr / ρr . In particular 
 

 
  
V1 =

ρr

ρw

Vr . (27.6.13) 

 
Because the density of the rock is greater than the density of the water,  ρr > ρw , the rock 
displaces more water when it is floating than when it is immersed in the water,   V1 >Vr . 
Therefore the water level drops when the rock is dropped into the water from the salad 
bowl. 
 

Example 27.6 Block Floating Between Oil and Water 
 
A cubical block of wood, each side of length   l = 10 cm , floats at the interface between air 
and water.  The air is then replaced with   d = 10 cm  of oil that floats on top of the water. 
 

a) Will the block rise or fall? Briefly explain your answer. 
 
After the oil has been added and equilibrium established, the cubical block of wood floats 
at the interface between oil and water with its lower surface   h = 2.0×10−2 m  below the 
interface. The density of the oil is   ρo = 6.5×102 kg ⋅m−3 . The density of water is 

  ρw = 1.0×103 kg ⋅m−3 . 
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b) What is the density of the block of wood? 

 
Solution: (a) The buoyant force is equal to the gravitational force on the block. Therefore 
 
   ρbgV = ρwgV1 + ρag(V −V1)  , (27.6.14) 
 
where   V1  is the volume of water displaced by the block,   V2 =V −V1  is the volume of air 
displaced by the block   V  is the volume of the block,  ρb  is the density of the block of 
wood, and  ρa  is the density of air (Figure 27.12(a)).  
 

 
 
 

Figure 27.12: (a) Block floating on water, (b) Block floating on oil-water interface 
 
 
We now solve Eq. (27.6.14) for the volume of water displaced by the block 
 

 
  
V1 =

(ρb − ρa )
(ρw − ρa )

V . (27.6.15) 

 
When the oil is added, we can repeat the argument leading up to Eq. (27.6.15) replacing 

 ρa  by  ρo , (Figure 27.12(b)), yielding 
 
   ρbgV = ρwg ′V1 + ρog ′V2  , (27.6.16) 
 
where   ′V1  is the volume of water displaced by the block,   ′V2  is the volume of oil 
displaced by the block,  V  is the volume of the block, and  ρb  is the density of the block 
of wood. Because   ′V2 =V − ′V1 , we rewrite Eq. (27.6.16) as 
 
   ρbgV = ρwg ′V1 + ρog(V − ′V1)  , (27.6.17) 
 
We now solve Eq. (27.6.17) for the volume of water displaced by the block, 
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′V1 =

(ρb − ρo )V
(ρw − ρo )

. (27.6.18) 

 
Because  ρo >> ρa , comparing Eqs. (27.6.18) and (27.6.15), we conclude that   ′V1 >V1 . 
The block rises when the oil is added because more water is displaced. 
 
(b) We use the fact that   ′V1 = l2h ,   ′V2 = l2(l − h) , and   V = l3 , in Eq. (27.6.16) and solve for 
the density of the block 
 

 
  
ρb =

ρw ′V1 + ρo ′V2

V
=
ρwl2h+ ρol

2(l − h)
l3 = (ρw − ρo ) h

l
+ ρo  . (27.6.19) 

 
We now substitute the given values from the problem statement and find that the density 
of the block is 
 

 

  

ρb = ((1.0×103 kg ⋅m−3)− (6.5×102 kg ⋅m−3)) (2.0×10−2 m)
(1.0×10−1m)

+ (6.5×102 kg ⋅m−3)

ρb = 7.2×102 kg ⋅m−3.
  (27.6.20) 

 
 
Because  ρb > ρo , the above analysis is valid. 


