6 – Work and Energy

Work - The concept following from the analysis of simple mechanical devices

- **Lever**
 - Simple machines allow to gain in force: achieve a greater *output* force with a smaller *input* force
 - Gaining in force one loses in distance
 \[F_1 d_1 = F_2 d_2 \]

- **Pulley**
 - Concept of *work*:
 \[\text{Work} = \text{force} \times \text{distance} \] is conserved: \((\text{work input}) = (\text{work output})\)
Definition of Work for a constant force

![Diagram of force and displacement vectors]

Definition: \(W = F_x d = Fd \cos \theta = \mathbf{F} \cdot \mathbf{d} \)
(dot-product of two vectors)

Force components perpendicular to displacement do not produce work as \(\cos \theta = 0 \)!
Work is negative, if \(\cos \theta < 0 \)

Unit of work: J(oule)
\(J = \text{N(ewton)} \cdot \text{m} = \text{kg} \cdot \text{m}^2/\text{s}^2 \)

Example:

![Diagram of example scenario]

Problem:

- \(m = 50 \text{ kg}, \ F = 100 \text{ N}, \ F_{\text{fr}} = 50 \text{ N} \)
- \(\theta = 37^\circ, \ d = 40 \text{ m} \)

Work done by each force - ?

Solution

\(W_G = mgd \cos 90^\circ = 0 \), \(W_N = F_N d \cos 90^\circ = 0 \)

\(W_{\text{Pull}} = Fd \cos \theta = 100 \text{ N} \times 40 \text{ m} \times \cos 37^\circ = 3200 \text{ J} \)

\(W_{\text{fr}} = F_{\text{fr}} d \cos 180^\circ = 50 \text{ N} \times 40 \text{ m} \times (-1) = -2000 \text{ J} \)
\textit{Infinite\textit{esimal work and total work}}

If the force is not constant but changes from point to point, one has to consider the \textit{infinitesimal} work corresponding to an \textit{infinitesimal} displacement $\Delta \mathbf{r} \to 0$:

$$\Delta W = \mathbf{F} \cdot \Delta \mathbf{r}$$

The total work is the sum of all infinitesimal works along the trajectory:

$$W = \sum_i \Delta W_i = \sum_i \mathbf{F}_i \cdot \Delta \mathbf{r}_i$$

\textbf{Power} \hspace{1cm} \text{- Rate of doing work}

Instantaneous power: $P = \frac{\Delta W}{\Delta t}$

Unit of power: $W(\text{att})$

It can be expressed as $P = \frac{\mathbf{F} \cdot \Delta \mathbf{r}}{\Delta t} = \mathbf{F} \cdot \mathbf{v}$

$$W = J(\text{oule}) / s = \text{kg m}^2 / \text{s}^3$$

\textbf{Car:}

For $P = \text{const}$ one has $F = \frac{P}{v}$, so that the maximal acceleration $a = \frac{F}{m} = \frac{P}{mv}$ decreases with the speed
(Mechanical) Energy - Work stored in a body or ability of a body to do work

Mechanical energy = Kinetic energy + Potential energy

\[E = E_{\text{kin}} + E_{\text{pot}} \]

\[E_{\text{kin}} = \frac{mv^2}{2}, \quad E_{\text{pot}} - \text{different forms} \]

Work done \quad Increase of energy

Illustration for the linear motion with constant acceleration \((x_0 = v_0 = 0)\)

Work (function of the process):

\[W = Fx = ma \frac{1}{2} at^2 = m(at)^2 = \frac{mv^2}{2} \quad \text{Kinetic energy} \]

In general:

\[W_{12} = \Delta E = E_2 - E_1 \]

Work of external forces done on the way from position 1 to position 2 equals the change of energy of the system

Or \(W = E_f - E_i \), where \(E_f \) and \(E_i \) are the final and initial total energies and \(W \) is the work of the external forces on the system.
Potential Energy

Work of the external force needed to bring a system from the reference state into another state quasistatically ($v \to 0$)

Potential energy is defined up to an arbitrary constant that can be understood as the potential energy of the reference state

Gravitational energy

\[E_{pot} = W = Fh = mgh \]

Example: free fall from the height h

and the energy conservation (see next slides).

Prove that the total energy is conserved, $E_f = E_i$.

Proof:

Initial state: $E_{pot} = mgh$ and $E_{kin} = 0$, $E_i = mgh$

Final state: $z = 0$, $E_{pot} = mgz = 0$, $E_{kin} = \frac{mv^2}{2}$

\[v = -gt, \quad z = h - \frac{1}{2}gt^2, \quad z = 0 \Rightarrow t^2 = \frac{2h}{g} \]

\[E_f = E_{kin} = \frac{mv^2}{2} = \frac{mg^2t^2}{2} = \frac{mg^22h/g}{2} = mgh = E_i. \]

OK
Elastic energy (the energy of a deformed spring)

Hooke's law for the spring: \(F_{Hooke} = -kx \)

- \(k \) – stiffness of the spring
- \(x \) – elongation/kompression, \(x \equiv X - X_0 \)
- \(X_0 \) - the length of the free spring
- \(X \) – the length of the deformed spring

\[
F + F_{Hooke} = ma = 0 \rightarrow F = kx \text{ (external force)}
\]

\[
E_{pot} = W = \sum_i F(x_i)\Delta x_i \text{ - area under the curve } F(x)
\]

\[
E_{pot} = \frac{1}{2} kx^2 \]

\(F \) vs. \(x \)
Conservation of Energy

In the absence of dissipation (friction) the total energy of an isolated system is conserved:

\[E = E_{\text{tot}} = E_{\text{pot}} + E_{\text{kin}} = \text{const} \]

Energies of the two different kinds can be transformed into each other:
- potential energy can be released into kinetic energy
- kinetic energy can be absorbed into potential energy

Problem
At 1: \(m=0.5 \text{ kg}, \ h=12 \text{ cm}, \ v=0 \)
Speed at 2 ?

Solution
Energy conservation in general:
\[E_1 = E_{\text{kin},1} + E_{\text{pot},1} = E_2 = E_{\text{kin},2} + E_{\text{pot},2} \]
But here \(E_{\text{kin},1} = E_{\text{pot},2} = 0 \),
thus, the energy conservation has the form
\[E_{\text{pot},1} = mgh = E_{\text{kin},2} = \frac{mv^2}{2} \]
\[v_2 = \sqrt{2gh} = \sqrt{2 \times 9.8 \text{ m/s}^2 \times 0.12 \text{ m}} = 1.53 \text{ m/s} \]
Problem

A dart of a mass 0.100 kg is pressed against the spring of a toy dart gun. The spring with spring stiffness \(k = 250 \text{ N/m} \) is compressed 6.0 cm and released. If the dart detaches from the spring when the spring is reaching its natural length \((x=0)\) what speed does the dart acquire?

\[
\text{Known: } m = 0.1 \text{ kg}, \quad k = 250 \text{ N/m}, \quad x_1 = 6 \text{ cm} = 0.06 \text{ m}
\]

\[
\text{To find: } v_2 - ?
\]

Solution: The total energy of the system spring + dart is conserved

State 1: Deformed spring, potential energy

State 2: Flying dart, kinetic energy

\[
E_1 = E_2 \quad \Rightarrow \quad \frac{1}{2} kx_1^2 = \frac{mv_2^2}{2} \quad \Rightarrow \quad v_2 = \sqrt{\frac{kx_1^2}{m}} = x_1 \sqrt{\frac{k}{m}}
\]

\[
\sqrt{x^2} = (x^2)^{1/2} = x^{2\times1/2} = x^1 = x
\]

More accurately:

\[
\sqrt{x^2} = |x|
\]

Plugging numbers:

General analytical result

\[
v_2 = 0.06 \text{ m} \sqrt{\frac{250 \text{ N/m}}{0.1 \text{ kg}}} = 0.06 \sqrt{2500} = 0.06 \times 50 = 3 \text{ m/s}
\]

Check units separately:

\[
m \sqrt{\frac{\text{N/m}}{\text{kg}}} = m \sqrt{\frac{\text{kg m/s}^2}{\text{m}}} = m \sqrt{1/s^2} = \text{m/s}, \quad \text{OK}
\]