
Complex numbers and functions

Complex numbers is a kind of two-dimensional vectors whose components are the so-called real part and imaginary part. The

real part usually corresponds to physical quantities while the imaginary part is a purely mathematical construction. Complex

numbers are useful in physics, as well in the mathematics of real numbers, because they open a new dimension that allows to

arrive at the results in a much faster and elegant way. Using complex numbers allows sometimes to obtain analytical results

that is impossible to obtain in other way, such as exact values of some definite integrals.

Basic definitions

Complex numbers can be introduced in the component form 

z = u + �v,

where u and v are real numbers, the real and imaginary parts (components) of z. That is,

u = Re@zD, v = Im@zD.

To keep components of z apart, a special new number Â is introduced, the so-called imaginary one. The modulus or absolute

value of a complex number is defined by

†z§ = u
2 + v2 ,

the same as for 2 d  vectors. Complex conjugate z* of a complex number z = u + Âv is defined by

z
∗ = u − �v.

By default, all symbols in Mathematica can be complex (including u and v) so that unspecified finding the real and imagi-

nary parts of z does not work 

In[15]:= z = u + � v;

Re@zD

Im@zD

Out[16]= −Im@vD + Re@uD

Out[17]= Im@uD + Re@vD

To make it work, one has to declare u and v as real in Assumptions

In[12]:= z = u + � v;

Simplify@Re@zD, Assumptions → 8u ∈ Reals, v ∈ Reals<D

Simplify@Im@zD, Assumptions → 8u ∈ Reals, v ∈ Reals<D

Out[13]= u

Out[14]= v

Addition and subtraction of complex numbers are defined component-by-component,

z1 ± z2 = u1 ± u2 + � Hv1 ± v2L,

so that the commutation and association properties are fulfilled,

z1 + z2 = z2 + z1,

Hz1 + z2L + z3 = z1 + Hz2 + z3L

etc. 



Multiplication of complex numbers is defined by imposing the property

�2 = −1.

This yields

z1 z2 =

Hu1 + �v1L Hu2 + �v2L = u1 u2 + � Hv1 u2 + u1 v2L + �2 v1 v2 = u1 u2 − v1 v2 + � Hv1 u2 + u1 v2L

that is, 

Re@z1 z2D = u1 u2 − v1 v2, Im@z1 z2D = v1 u2 + u1 v2.

Obviously this new kind of multiplication differs from multiplication of vectors. In two dimensions, vector (cross) product

cannot be defined at all while the scalar (dot) product produces a scalar. One can introduce more complicated objects than

complex numbers that have three and more components with several kinds of imaginary ones, but these objects do not have

much application. 

Product of a complex number and its complex conjugate is real 

zz∗ = Hu + �vL Hu − �vL = u2 − �2 v2 = u2 + v2 = †z§2.

Division of complex numbers can be introduced via their multiplication and division of reals by eliminating complexity in

the denominator

z1

z2

=
z1

z2

z
2
∗

z
2
∗
=

z1 z2
∗

†z2§2
=
u1 u2 + v1 v2 + � Hv1 u2 − u1 v2L

u
2
2 + v

2
2

.

Multiplication and division are also commutative and associative. 

Trigonometric / exponential form

Similarly to 2 d  vectors, complex numbers can be represented by their modulus (length) r and angle (phase) f as 

z = ρ HCos@φD + �Sin@φDL, ρ ≡ †z§.

This formula can be brought into a more compact and elegant shape

z = ρ
�φ

by introducing the imaginary exponential


�φ ≡ Cos@φD + �Sin@φD.

This formula can be proven by expanding the three functions in power series, using �2 = −1 and grouping real and imagi-

nary terms on the left. The exponential representation makes multiplication and division of complex numbers very easy

z1 z2 = ρ1 
�φ1 ρ2 
�φ2 = ρ1 ρ2 
� Hφ1+φ2L

In particular,

Re@z1 z2D = ρ1 ρ2 Cos@φ1 + φ2D, Im@z1 z2D = ρ1 ρ2 Sin@φ1 + φ2D

that is much easier than the component formula above. Similarly

z1

z2

=
ρ1

ρ2

� Hφ1−φ2L.

Squaring a complex number z yields

z
2 = ρ2 HCos@φD + �Sin@φDL2 = ρ2 ICos@φD2 − Sin@φD2 + 2 �Sin@φD Cos@φDM

On the other hand,
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z
2 = ρ2 
2 �φ = ρ2 HCos@2 φD + �Sin@2 φDL

Equating the real and imaginary parts of these two formulas, one obtains the trigonometric identities

Cos@2 φD = Cos@φD2 − Sin@φD2

Sin@2 φD = 2 Sin@φD Cos@φD

One can derive formulas for Sin and Cos of any multiple arguments with this method.

Functions of complex variables

With the help of power series one can extend many functions of real arguments for complex numbers. In particular, the

complex exponential is defined as


z = 
u+�v = 
u 
�v = 
u HCos@vD + �Sin@vDL.

The natural logarithm becomes

Ln@zD = LnAρ
�φE = Ln@ρD + LnA
�φE = Ln@ρD + �φ

As, in fact, the angle f of a complex number is defines up to 2 pn, the complex logarithm is a multi-valued function. Combin-

ing the formulas


�φ ≡ Cos@φD + �Sin@φD

−�φ ≡ Cos@φD − �Sin@φD

one can obtain the relation between the trigonometric and hyperbolic functions

Cos@φD ≡

�φ + 
−�φ

2
= Cosh@�φD

Sin@φD ≡

�φ − 
−�φ

2 �
= −�Sinh@�φD.

Accordingly,

Cos@�φD ≡

−φ + 
φ

2
= Cosh@φD

Sin@�φD ≡

−φ − 
φ

2 �
= �Sinh@φD.

All relations above are also valid for complex z, so that one obtains 

Cos@zD ≡

�z + 
−�z

2
=


−v+�u + 
v−�u

2
=


−v HCos@uD + �Sin@uDL + 
v HCos@uD − �Sin@uDL

2
= Cos@uD Cosh@vD − �Sin@uD Sinh@vD

and many other formulas. 

Whereas integer powers of complex numbers are one-valued in spite of f being multi-valued,

zm = ρm 
�m Hφ+2 πnL = ρm 
�mφ, m, n = 0, ±1, ±2, ...

fractional powers of complex numbers are multivalued. For instance, the square root

z1ê2 = ρ1ê2 
� Hφ+2 πnLê2 = ρ1ê2 
� Hφê2+πnL, n = 0, ±1, ±2

has two different values
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z
1ê2 = ρ1ê2 
� Hφ+2 πnLê2 = ρ1ê2 
� Hφê2+πnL

, n = 0, 1,

whereas all other n result in replicas of these two values. In particular,

1
1ê2 = 
�πn

, n = 0, 1,

that yields 11ê2 =±1. Further,

H−1L1ê2 = 
� Hπê2+πnL
, n = 0, 1,

that yields H−1L1ê2 =±Â. Accordingly, the quadratic equation

z
2 − c � 0

has two roots because its solution z = c1ê2 is a two-valued quantity. It can be shown that any other quadratic equation has two

roots that in general are complex. 

High fractional powers z1êm can be considered in a similar way and it can be shown that they are m-valued, Accordingly, any

algebraic equation of mth power has m roots. 
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