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I. PREFACE

Molecular theory can be considered as a preliminary to statistical physics. While the latter employs a more sophisti-
cated formalism encompassing quantum-mechanical systems, the former operates with a classical ideal gas. Molecular
theory studies the relation between the temperature of the gas and the kinetic energy of the molecules, pressure on
the walls due to the impact of the molecules, distribution of molecules over velocities etc. All these results can be
obtained in a more formal way in statistical physics. However, it is convenient to first study molecular theory at a more
elementary level. On the other hand, molecular theory includes kinetics of classical gases that studies nonequilibrium
phenomena such as heat conduction and diffusion (not a part of this course)

II. BASIC ASSUMPTIONS OF THE MOLECULAR THEORY

1. Motion of atoms and molecules is described by classical mechanics

2. The number of particles in a considered macroscopic volume is very large. As there are about 1019 molecules
in 1 cm3 at normal conditions, this assumption holds down to high vacuums. Because of the large number of
particles, the impacts of individual particles on the walls merge into time-independent pressure.

3. The characteristic distance between the molecules largely exceeds the molecular size and the typical radius of
intermolecular forces. This assumption allows to consider the gas as ideal, with the internal energy dominated
by the kinetic energy of the molecules. In describing equilibrium properties of the ideal gas collisions between the
molecules can be neglected. If pressure is increased and/or temperature is decreased, this assumption becomes
violated and the gas becomes non-ideal and then condenses into a liquid or solid.

4. The molecules are uniformly distributed within the container. In most cases this is true. In the case of strong
enough potential fields, this condition may be violated. For instance, the density (concentration) of molecules in
the atmosphere decreases with the height. This decrease is slow, however, so that in a laboratory-size container
the gas is still approximately uniform.

5. Directions of velocities of the molecules are uniformly distributed. This is the hypothesis of the molecular chaos
that is always true.

An important independent consideration is that motion of molecules along different perpendicular directions such as
x, y, and z is independent. Indeed, if a molecule experiences a force impulse (e.g., because of a collision) in the
direction x, it does not change its velocity components vy and vz. This leads to the postulate of factorization of their
distribution function into parts depending on the velocity components vx, vy, and vz. The latter allows to find this
distribution function that turns out to be exponentially dependent on molecule’s kinetic energy.

III. CHARACTERISTIC LENGTHS OF THE GAS

The concentration of molecules n is defined by

n ≡ N

V
, (1)

where V is the volume of the container and N is the total number of molecules. If the concentration is non-uniform,
one has to modify this formula by considering a small volume around a particular point in the space that contains a
macroscopic number of molecules.
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The characteristic distance r0 between the molecules can be estimated as

r0 =
1

n1/3
. (2)

Note that one cannot introduce a meaningful average distance between the molecules as the latter will be dominated
by the molecules far apart.

Let a be the raduis of the molecule or an atom. (For simplicity, we consider them as spheres.) Then the third
assumption requires a� r0. There are also long-range attractive forces between the molecules but they are weak and
do not essentially deviate molecular trajectories from straight lines if the temperature is high enough.

One can define the mean free path l of the molecules as the distance they typically travel before colliding with
another molecule. As the molecule is moving straight, it will hit any molecule whose center is located at the distance
less then 2a from the molecule’s trajectory, that is, any molecule within a cylinder of the radius 2a. The cross-section
of this cylinder is σ = π (2a)

2
. The free path ends, on average, when the height l of the cylinder reaches such a

value when there is one molecule within the cylinder: lσn = 1. Thus one obtains the expression for l and important
inequalities:

l =
1

σn
∼ 1

a2n
=
(r0
a

)2
r0 � r0 � a. (3)

Although the numerical factor in l can be calculated more accurately, one can already see that l is very large in the
ideal gas, so that one can neglect collisions on the way to the wall in calculating the pressure and other quantities.

IV. VELOCITY AND SPEED DISTRIBUTION FUNCTIONS OF MOLECULES

Whereas the distribution of molecules in space is practically uniform, their distribution in the space of velocities
(vx, vy, vz) is nontrivial. One can introduce the distribution function G (vx, vy, vz) via

dN = NG (vx, vy, vz) dvxdvydvz, (4)

where dN is the number of molecules with the velocities within the elementary volume

dvxdvydvz ≡ d3v ≡ dv (5)

around the velocity vector specified by its components (vx, vy, vz) . Integration over the whole velocity space gives the
total number of molecules N, thus G (vx, vy, vz) satisfies the normalization condition

1 =

∫ ∫ ∫ ∞
−∞

dvxdvydvzG (vx, vy, vz) . (6)

As the directions of the molecular velocities are distributed uniformly, G (vx, vy, vz) in fact depends only on the absolute
value of the velocity, the speed

v =
√
v2x + v2y + v2z . (7)

Using the expression for the elementary volume in the spherical coordinates

d3v = dv × vdθ × v sin θdϕ = v2dv sin θdθdϕ, (8)

one can rewrite Eq. (4) as

dN = NG(v)v2dvdΩ, (9)

where

dΩ ≡ sin θdθdϕ (10)

is the elementary body angle. The number of molecules within the spherical shell of width dv can be obtained by
integration over irrelevant directions. Since for the area of a sphere of unit radius one has∫

sphere

dΩ =

∫ π

0

dθ sin θ

∫ 2π

0

dϕ = 2π

∫ 1

−1
dx = 4π (11)
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FIG. 1: Slant cylinder used in the calculation of the molecular flux. Here ϕ = π/2.

(x ≡ cos θ), the number of molecules within the spherical shell becomes

dN = NG(v)4πv2dv = Nf(v)dv. (12)

Here we have introduced the distribution function over molecular speeds

f(v) = 4πv2G(v) (13)

that is also normalized by 1:

1 =

∫ ∞
0

dvf(v). (14)

Now Eq. (9) can be rewritten in terms of f(v) as

dN = Nf(v)dv
dΩ

4π
. (15)

It is remarcable that the functional form of G(v) or f(v) can be found from symmetry arguments only. This will
be done later. Here we introduce the average speed

v =

∫ ∞
0

dv vf(v) (16)

and the mean square speed

v2 =

∫ ∞
0

dv v2f(v). (17)

The root mean square or rms speed is defined by

vrms =
√
v2. (18)

The two characteristic speeds, v and vrms, are of the same order of magnitude and differ only by a numerical factor of
order 1. We will see that the molecular flux is proportional to v while the pressure on the walls is proportional to v2.

V. MOLECULAR FLUX

Molecular flux Φ is defined as the number of molecules dN crossing a unit surface in one direction during a unit of
time. For instance, molecular flux determines the rate of molecules striking the wall or exiting the container through
a small orifice in the wall (effusion). The expression for the flux reads

Φ =
dN

dSdt
, (19)
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where dS is the elementary surface. As the molecules are approaching the surface dS from all directions θ, ϕ of a
hemisphere, one should first consider the number of molecules dNθ,ϕ coming from a particular direction θ, ϕ within
the body angle dΩ around it. From these molecules we single out molecules with the speeds in the interval dv around
v, thus obtaining dNv,θ,ϕ. The latter is the number of molecules within the slant cylinder with the base area dS and
height v cos θdt, see Fig. V. The volume of this cylinder is dV = dSv cos θdt and the total number of molecules in it
is dNV = ndV, where the concentration n is defined by Eq. (1). From this total number of molecules dNV one has to
pick those within the given velocity interval specified by v, θ, ϕ. With the help of Eq. (15) with N ⇒ dNV this yields

dNv,θ,ϕ = dNV f(v)dv
dΩ

4π
= ndSv cos θdtf(v)dv

sin θdθdϕ

4π
. (20)

Integrating over v, θ, ϕ and using Eqs. (19) and (16) one obtains the flux

Φ =

∫
dNv,θ,ϕ
dSdt

= n

∫ ∞
0

dv vf(v)
1

4π

∫ π/2

0

dθ sin θ cos θ

∫ 2π

0

dϕ

= n× v × 1

4π

∫ 1

0

dxx× 2π. (21)

Note that the molecules are approaching the wall only from inside of the container, 0 ≤ θ ≤ π/2. After calculating
the integral over x, one obtains

Φ =
1

4
nv. (22)

If, instead of the wall, one considers the flux through a flat region on the area dS inside the container, the molecules
will approach this area from both directions, so that one has to integrate over the interval 0 ≤ θ ≤ π that results in a
zero flux (the numbers of molecules crossing in both directions are the same).

VI. GAS PRESSURE ON THE WALLS

As said above, the gas pressure is due to the impact of molecules on the walls. Considering the elementary surface
dS as above one can define pressure as P = dF/dS, where dF is the force acting upon the surface dS from the
molecules. The force can be obtained from the Newton’s second law in the form dp/dt = F, where p is the momentum
of the molecules that changes in time due to the rebound from the wall. Adopting this to our case yields the formula

P =
dp

dSdt
, (23)

where dp is the change of the momentum of the molecules within the slant cylinder considered in the preceding section.
The change of the momentum of a single molecule in the collision with the wall is, strictly speaking, not well defined.

The problem is that at the atomic level walls are rough and the incident molecule can rebound in different directions.
On the other hand, one can consider the realistic rough wall as built of small plates oriented at different angles. Since
the pressure will not depend on the orientation of the elementary surfaces (similarly to Pascal’s law), one can dismiss
the effect of the wall roughness. Another effect that can make the calculation more involved is the inelasticity of the
molecule-wall collision due to the exchange of energy between the molecules and the atoms of the wall. As a result,
some molecules rebound stronger and some rebound weaker, relative to the elastic collision. A detailed analysis shows
that the molecule-wall collisions average out to the elastic collision if the walls and the gas have the same temperatures
and thus are at equilibrium. Thus here we will consider the collisions of molecules with the wall as elastic collisions
with a flat surface.

As the change of the momentum of an individual molecule in an elastic colision is given by mv cos θ− (−mv cos θ) =
2mv cos θ, m being the mass of a molecule, similarly to Eq. (21) one obtains

P =

∫
2mv cos θ

dNv,θ,ϕ
dSdt

= 2nm

∫ ∞
0

dv v2f(v)
1

4π

∫ π/2

0

dθ sin θ cos2 θ

∫ 2π

0

dϕ

= 2nm× v2 × 1

4π

∫ 1

0

dxx2 × 2π (24)

that results in

P =
1

3
nmv2. (25)



5

VII. MOLECULAR INTERPRETATION OF TEMPERATURE AND EQUIPARTITION OF ENERGY

Rewriting Eq. (25) as PV = (1/3)Nmv2 and comparing this with the equation of state in the form PV = NkBT
one obtains

kBT =
1

3
mv2, (26)

the fundamental relation between the temperature and average kinetic energy of the molecule ε. This relation can be
rewritten in the form

ε =
1

2
mv2 =

3

2
kBT. (27)

Since v2 = v2x + v2y + v2z and by symmetry v2x = v2y = v2z = v2/3, for the kinetic energies corresponding to the three
degrees of freedom x, y, z one obtains

εx = εy = εz =
1

2
kBT. (28)

That is, the thermal energy per degree of freedom is (1/2) kBT.
This is a particular case of the equipartition of energy valid for classical systems: There is thermal energy (1/2) kBT

per each degree of freedom. In addition to the three translational degrees of freedom there are rotational and vibrational
degrees of freedom if the molecules of the gas consist of more than one atom. Vibrational degrees of freedom are counted
twice since there are both kinetic and potential energies involved.

For instance, for diatomic molecules there are two rotational degrees of freedom corresponding to rotations around
the two axes perpendicular to the axis connecting the two molecules. Also there is one vibrational degree of freedom
that is counted twice. The total number of degrees of freedom is

f = 3 + 2 + 2 = 7 (29)

for diatomic molecules.
For multi-atomic molecules with N > 2 atoms that are not aligned, there are 3 translational and 3 rotational degrees

of freedom. The number of vibrational degrees of freedom is difficult to calculate directly. However, this number can
be easily calculated by subtracting 3 + 3 non-vibrational degrees of freedom from the total 3N degrees of freedom.
Thus one obtains 3N − 6 vibrational degrees of freedom that should be counted twice. The total number of degrees
of freedom for multi-atomic molecules is thus

f = 3 + 3 + 2 (3N − 6) = 6 (N − 1) (30)

that yields f = 12 for N = 3.

VIII. HEAT CAPACITY OF THE IDEAL GAS

For the monoatomic gas the average energy per particle is given by Eq. (27). Since there is no potential energy, the
internal energy of the system is given by

U =
3

2
NkBT. (31)

This the heat capacity at constant volume is

CV =

(
∂U

∂T

)
V

=
3

2
NkB . (32)

Now with the use of the Mayer’s formula one obtains

CP = CV +NkB =
5

2
NkB (33)

that yields γ = CP /CV = 5/3. For multi-atomic molecules assuming equipartition results in U = (f/2)NkBT and

CV =
f

2
NkB , CP =

f + 2

2
NkB , γ = 1 +

2

f
. (34)
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In all these cases the heat capacity is a constant, so that the ideal gas is perfect gas. However, it turnes out that
vibrational degrees of freedom for multi-atomic gases are affected by quantum effects. As a result, these degrees of
freedom are fully or partially frozen out so that there is less thermal energy in them than the equipartition would
suggest. Quantum effects are strongly pronounced at low temperatures, whereas at high temperatures the vibrational
modes behave classically. As a result, heat capacities increase with temperature making the ideal gas not a perfect
gas.

IX. MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION

In this section the functional form of G (v) will be found from symmetry arguments. First, motion of molecules
of an ideal gas along different axes x, y, z is completely independent that implies statistical independence of different
velocity components. Thus G (v) factorizes:

G (v) = G
(√

v2x + v2y + v2z

)
= g (vx) g (vy) g (vz) , (35)

the function g being normalized by 1:

1 =

∫ ∞
−∞

dvxg (vx) . (36)

This means that each velocity component has its own distribution function g. Indeed, the number of molecules within
the shell dvx around vx is obtained by integrating Eq. (4) over irrelevant vy, vz:

dN = N

[∫ ∫ ∞
−∞

dvydvzG (v)

]
dvx. (37)

With the help of Eqs. (35) and (36) this becomes

dN = Ng (vx) dvx, (38)

that is, g (vx) is the distribution function of vx.
Factorization of G and its spherical symmetry implemented in Eq. (35) already allow to find its functional form.

Taking the logarithm of this equation,

lnG (v) = ln g (vx) + ln g (vy) + ln g (vz) , (39)

and differentiang it with respect to vx yields

G′ (v)

G

∂v

∂vx
=
G′ (v)

G

vx
v

=
g′ (vx)

g (vx)
. (40)

Rearranging and adding similar results for other components one obtains

1

v

G′ (v)

G
=

1

vx

g′ (vx)

g (vx)
=

1

vy

g′ (vy)

g (vy)
=

1

vz

g′ (vz)

g (vz)
. (41)

Since different terms of these equations depend on different independent arguments, the only possibility to satisfy
these equations is all terms being equal to the same constant:

1

v

G′ (v)

G
= −2k,

1

vx

g′ (vx)

g (vx)
= −2k, (42)

etc. Integrating these differential equations one obtains

G (v) = Ae−kv
2

, (43)

where A is the integration constant. One can see that indeed G (v) factorizes and

g (vx) = A1/3e−kv
2
x . (44)
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In fact, the derivation starting with Eq. (39) is probably unnecessary because Eq. (43) is the only factorizable function
depending on v. One can persuade oneself in it by a long comtemplation of Eq. (35).

Now the two constants, k and A, can be found from the normalization condition, Eq. (14) and the condition for
the mean square speed, Eq. (17), taking into account Eq. (26). As f(v) is related to G (v) by Eq. (13),

f(v) = 4πv2Ae−kv
2

, (45)

we will use the values of two Gaussian integrals∫ ∞
0

dxx2e−kx
2

=

√
π

4
k−3/2∫ ∞

0

dxx4e−kx
2

=
3
√
π

8
k−5/2 (46)

that can be obtained by successive differentiation of the generic integral∫ ∞
0

dx e−kx
2

=

√
π

2
k−1/2 (47)

with respect to k. The normalization condition, Eq. (14), works out as

1 =

∫ ∞
0

dv f(v) = 4πA

∫ ∞
0

dv v2e−kv
2

= π3/2Ak−3/2. (48)

The condition for the mean square speed becomes

3kBT

m
= v2 =

∫ ∞
0

dv v2f(v) = 4πA

∫ ∞
0

dv v4e−kv
2

=
3π3/2

2
Ak−5/2. (49)

From these two equations one finds

k =
m

2kBT
, A =

(
k

π

)3/2

=

(
m

2πkBT

)3/2

. (50)

Let us now write down the final results for the distribution functions. Eq. (45) becomes

f(v) =

(
m

2πkBT

)3/2

4πv2 exp

(
− ε

kBT

)
, ε =

mv2

2
(51)

and Eq. (44) becomes

g(vx) =

(
m

2πkBT

)1/2

exp

(
− εx
kBT

)
, εx =

mv2x
2

. (52)

X. CHARACTERISTIC SPEEDS OF GAS MOLECULES

Let us calculate characteristic speeds for the ideal gas, two of which are the rms and average speed, Eqs. (18) and
(16). The rms speed can be immediately obtained from Eq. (49):

vrms =
√
v2 =

√
3kBT

m
' 1.732

√
kBT

m
. (53)

To calculate the average speed, one makes use of the Gaussian integral∫ ∞
0

dxx2n+1e−kx
2

=
n!

2kn+1
, n = 0, 1, 2, . . . (54)

with n = 1. Form Eq. 16) one obtains

v =

∫ ∞
0

dv vf (v) = 4πA

∫ ∞
0

dv v3e−kv
2

= 4πA
1

2k2
=

2π

k2

(
k

π

)3/2

=
2√
πk

=

√
8kBT

πm
' 1.596

√
kBT

m
. (55)
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The third characteristic speed is the most probable speed vm corresponding to the maximum of f(v). From

0 =
d

dv2
v2e−kv

2

= e−kv
2

− v2ke−kv
2

(56)

one obtains

vm =
1√
k

=

√
2kBT

m
' 1.414

√
kBT

m
, (57)

the smallest of the three characteristic speeds.

XI. EFFUSION

In Sec. V we have calculated the molecular flux Φ, the number of molecules hitting the unit area during the unit
of time. If there is a small hole in the wall of the container, the molecules will escape through this hole, the process
called effusion. If the hole is small enough, it does not disturb the gas in the container close to the hole and the result
for the molecular flux given by Eq. (22) remains valid. Then the number of molecules leaving the container per second
is given by Φ∆S, where ∆S is the area of the hole.

One can ask what is the speed distribution of escaping molecules. Certainly this is not the Maxwell-Boltzmann
distribution, already by the fact that the effusing molecules are moving all away from the container. Moreover, it
turns out that the characteristic speeds of the effusing molecules are higher than the speeds of the molecules in the
container. The reason is that faster molecules are approaching the hole from inside the container and exit at a higher
rate than the slow molecules. There are quite a few very slow molecules in the flux through the hole.

One can obtain the speed distribution of the effusing molecules by removing the integration over v in Eq. (21). One
can write

Φ =

∫ ∞
0

dvΦv, (58)

where

Φv =
1

4
nvf(v) (59)

is the molecular flux corresponding to the speed interval dv around the value v. This is Φv that defines the speed
distribution of the effusing molecules. Because of the additional v, this distribution is shifted to higher speeds. For
instance, the most probable speed of the effusing molecules corresponds to the maximum of Φv and is defined as

0 =
d

dv
v3e−kv

2

= 3v2e−kv
2

− v32kve−kv
2

, (60)

so that

ve,m =

√
3

2k
=

√
3kBT

m
. (61)

One can see that ve,m > vm given by Eq. (57). Similarly ve,rms > vrms and ve > v.


	Preface
	Basic assumptions of the molecular theory
	Characteristic lengths of the gas
	Velocity and speed distribution functions of molecules
	Molecular flux
	Gas pressure on the walls
	Molecular interpretation of temperature and equipartition of energy
	Heat capacity of the ideal gas
	Maxwell-Boltzmann distribution function
	Characteristic speeds of gas molecules
	Effusion

