Gauge / gravity duality in everyday life

Dan Kabat Lehman College / CUNY

Queens College - 11/8/2017

Outline

- 1. About the title...*
- 2. What is it?
- 3. What is it good for?
- 4. My own interest: gauge => gravity
- 5. Cosmology?

*credit to Hirosi Ooguri

Gauge / gravity duality, or AdS / CFT duality, has been around for a while.

J. Maldacena, 27 November '97

(building on many previous hints and insights)

20 Years Later: The Many Faces of AdS/CFT October 31-November 3, 2017 Since its inception gauge / gravity duality has become part of everyday life, at least for many in the theory community.

> 13 000 citations to the '97 paper

Sociology, not science.

What is it?

The basic idea is that there is an equivalence between

conformal quantum field theory, e.g. $\mathcal{N}=4$ susy SU(N) Yang-Mills in 3+1 dimensions

and

quantum gravity with AdS boundary conditions, e.g. IIB supergravity on ${\rm AdS}_5 \times S^5$

This is conjectured to be an exact equivalence.

Conformal QFT?

A quantum theory with no dimensionfull parameters, so that it's invariant under scale transformations.

$$(t, \vec{x}) \to (\lambda t, \lambda \vec{x})$$

In 3+1 dimensions the Coulomb potential

$$V(r) = \frac{e^2}{r}$$

is (classically) scale invariant. One can rig up quantum theories that have scale invariance.

One can do this in any number of dimensions. For instance the action in 0+1 dimensions

$$S = \frac{1}{2} \int dt \left(\dot{x}^2 - \frac{\gamma}{x^2} \right)$$

de Alfaro, Fubini, Furlan

$$[x] \sim t^{1/2}, \ \gamma \ \text{dimensionless}$$

is scale invariant. In fact it has a larger conformal symmetry

$$SL(2,\mathbb{R}): \qquad t \to \frac{at+b}{ct+d}$$

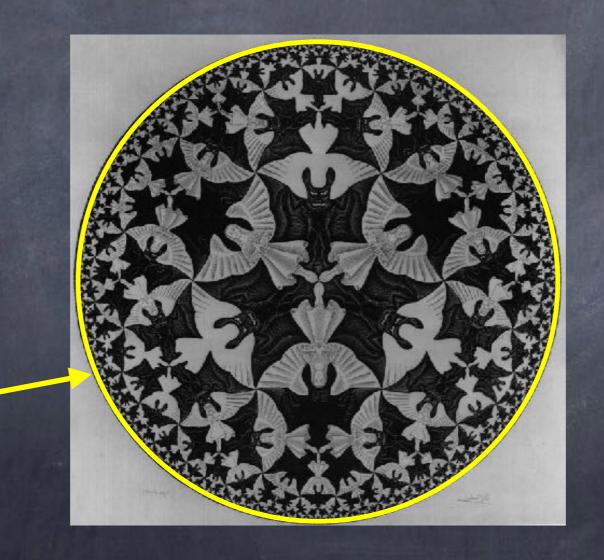
AdS boundary conditions?

Near spatial infinity, the geometry has constant negative curvature.

Euclidean 2 dimensional

$$ds^2 = \frac{dr^2 + r^2d\theta^2}{(1 - r^2)^2}$$

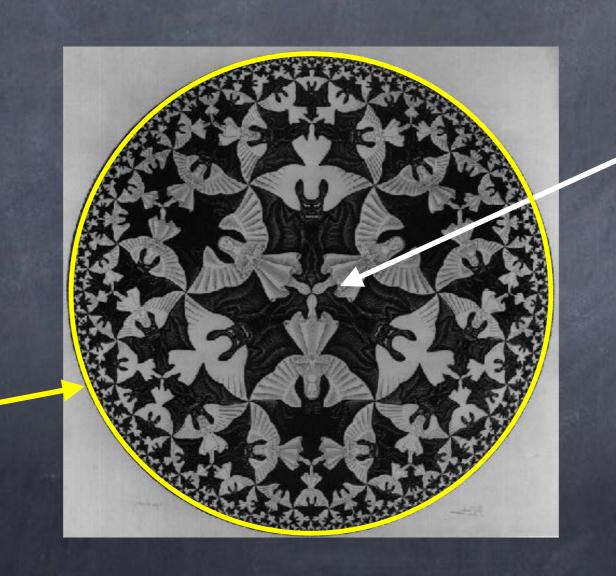
 $SL(2,\mathbb{R})$ isometry



CFT on boundary

gravity in the bulk

CFT on boundary



gravity in the bulk

CFT on boundary

This works both ways: (bulk gravity) <=> (boundary)

The power (and the challenge) comes from the fact that when the gravity theory is weakly coupled the CFT is strongly coupled, and visa versa.

For instance for N=4 SU(N) Yang-Mills

gauge coupling
$$\lambda=g_{\mathrm{YM}}^2N$$

AdS radius of curvature $R_{
m AdS} = \lambda^{1/4} \, \ell_{
m string}$

Can use bulk gravity as a tool to study strongly-coupled CFT's. Let's heat up the CFT.

(thermal CFT at temperature T) (black hole in AdS with temperature T)

Can use bulk gravity as a tool to study strongly-coupled CFT's. Let's heat up the CFT.

(thermal CFT at temperature T)

(black hole in AdS with temperature T)

entropy?

$$S = ?$$

Can use bulk gravity as a tool to study strongly-coupled CFT's. Let's heat up the CFT.

(thermal CFT at temperature T)

(black hole in AdS with temperature T)

entropy?

$$S = ?$$

$$S = \frac{\text{area}}{4G}$$

Can use bulk gravity as a tool to study strongly-coupled CFT's. Let's heat up the CFT.

(thermal CFT at temperature T)

(black hole in AdS with temperature T)

entropy?

$$S = ?$$

$$S = rac{ ext{area}}{4G}$$

$$= rac{\pi^2}{2} N^2 T^3 V$$

$$ext{for } \mathcal{N} = 4 \text{ SYM}$$

Gubser, Klebanov, Peet 1996

What about viscosity at finite temperature?

<u>CFT</u>

$$\eta = \frac{i}{\omega} \int dt d\mathbf{x} \, e^{i\omega t} \theta(t) \, \langle [T(t, \mathbf{x}), T(0, 0)] \rangle \Big|_{\omega \to 0}$$

perturb the CFT and see how the stress tensor responds

gravity

perturb the metric with a low-energy graviton and ask if it's absorbed by the black hole

$$\eta = \frac{\text{area}}{16\pi G}$$

Kovtun, Son, Starinets 2004

Comparing the two expressions

$$S = \frac{\text{area}}{4G} \qquad \qquad \eta = \frac{\text{area}}{16\pi G}$$

gravity predicts that at strong coupling

$$\frac{\eta}{S} = \frac{1}{4\pi} = \frac{\hbar}{4\pi k_B}$$

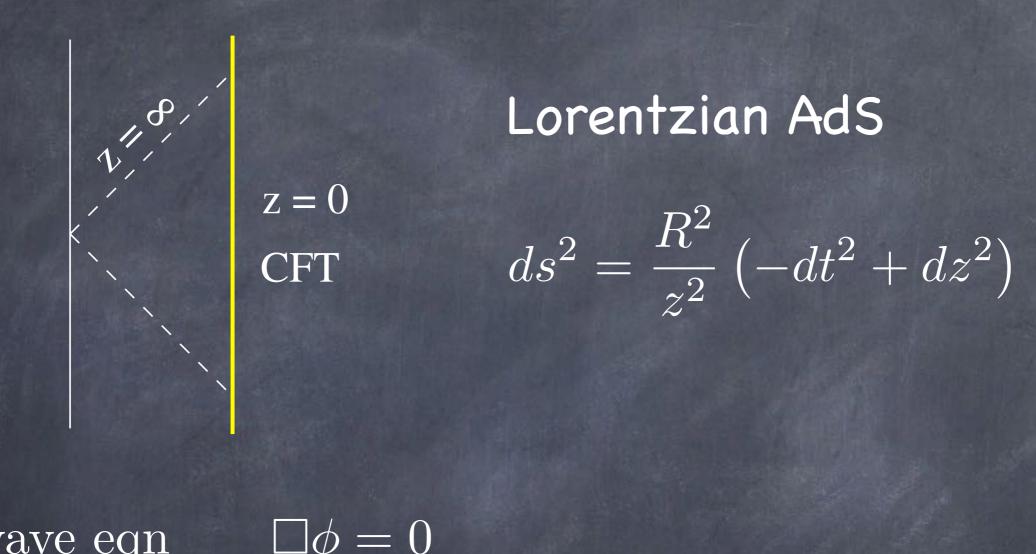
Conjectured to be a lower bound.

Gravity from conformal field theory

My main interest: the CFT is well-defined and (relatively) well-understood. Use it as a definition of quantum gravity.

At first sight the CFT has nothing to do with gravity. Can we describe bulk excitations (fields) in terms of the CFT?

Take a free massless scalar field ϕ in AdS₂.



$$ds^2 = \frac{R^2}{z^2} \left(-dt^2 + dz^2 \right)$$

wave eqn $\Box \phi = 0$

$$\Box \phi = 0$$

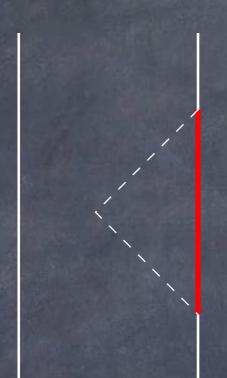
bdy cond
$$\phi(t,z) \sim z \mathcal{O}(t)$$
 as $z \to 0$

as
$$z \to 0$$

identify \mathcal{O} with a dimension-1 operator in the CFT

Can we express ϕ in terms of \mathcal{O} ?

Solution:
$$\phi(t,z) = \frac{1}{2} \int_{t-z}^{t+z} dt' \, \mathcal{O}(t')$$



support at spacelike separation

Works for bulk gauge fields and gravity as well.

$$A_{\mu}(x,z) = \int K j_{\mu}(x)$$

$$h_{\mu\nu}(x,z) = \int K T_{\mu\nu}(x)$$

What about interacting fields?

In higher dimensions, when there's a weakly-coupled bulk description (a CFT with a 1/N expansion), we know how to proceed.

In perturbation theory

$$\phi = \int K\mathcal{O} + \sum_{i} a_{i} \int K_{\Delta_{i}} \mathcal{O}_{i}$$

The coefficients a_i can be fixed, order-by-order in perturbation theory, by requiring bulk locality.

Kabat, Lifschytz, Lowe

What happens beyond perturbation theory?

Cosmology?

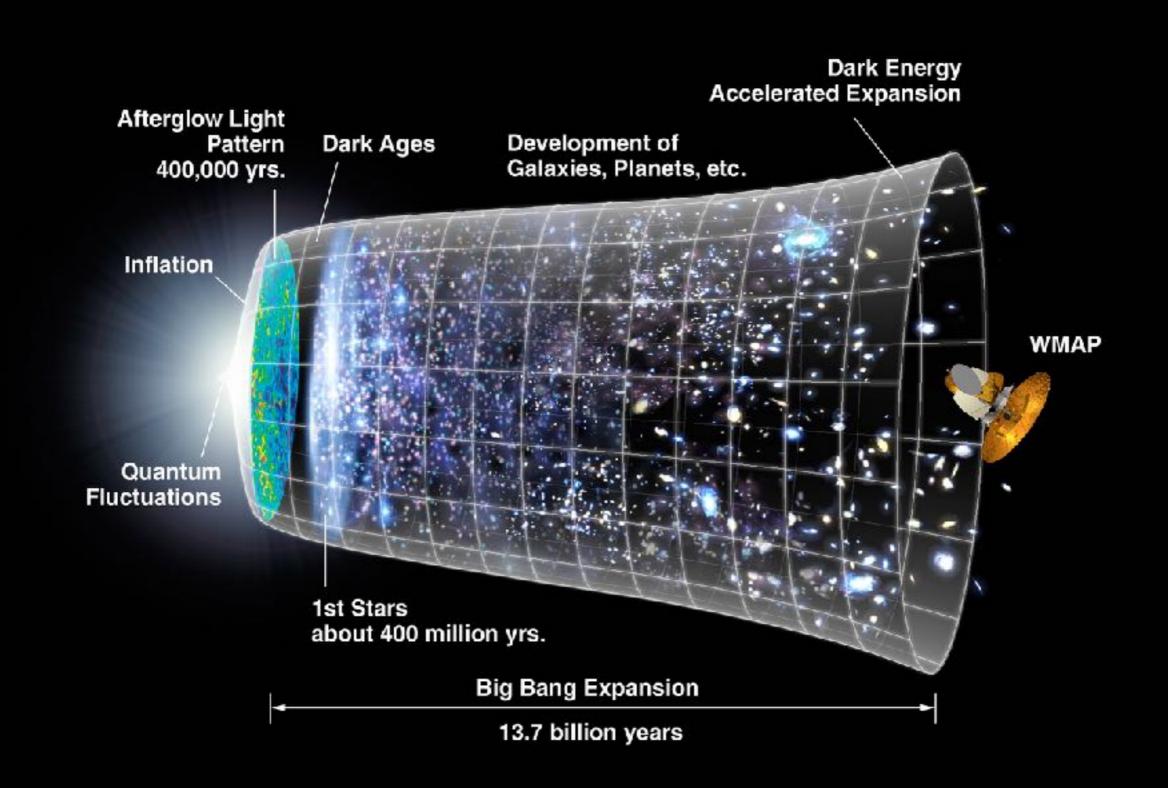
Maybe AdS / CFT is just an example of something bigger at work.

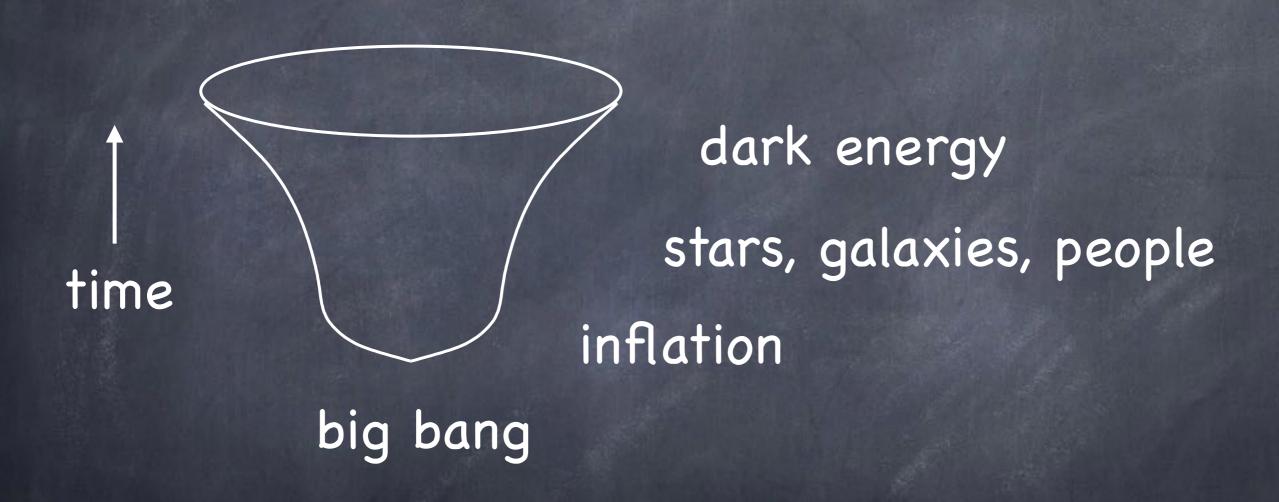
"Holographic principle" - a gravitational system can be completely described by theory on the boundary.

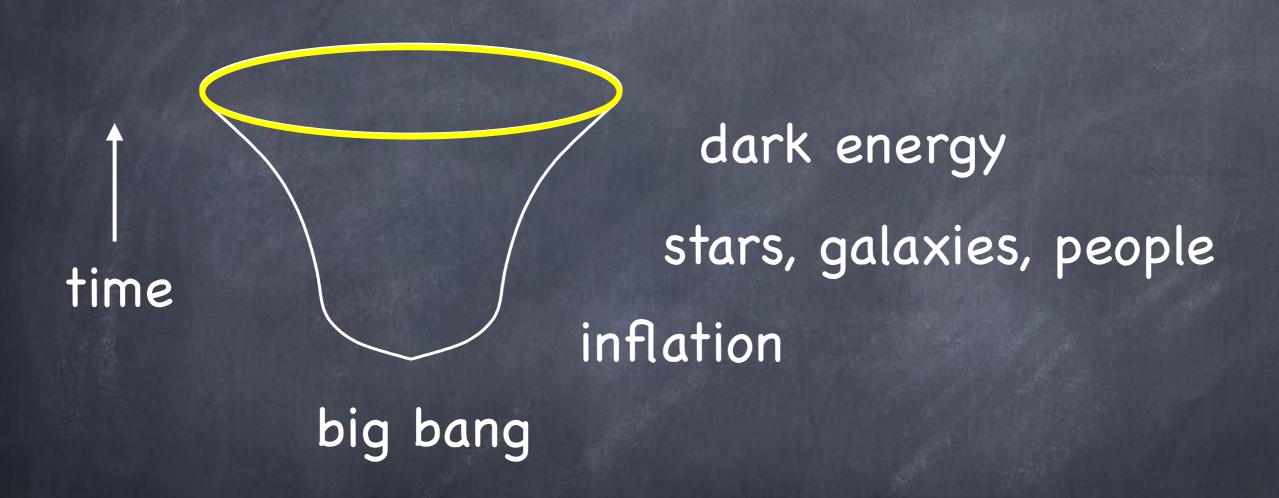
't Hooft, Susskind

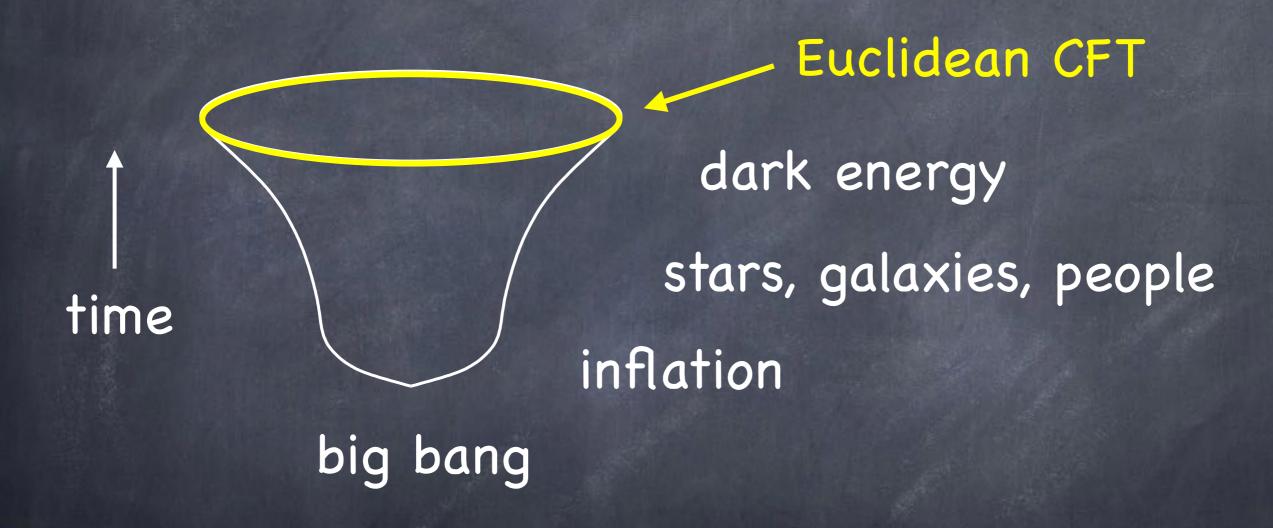
Does this apply to our universe?

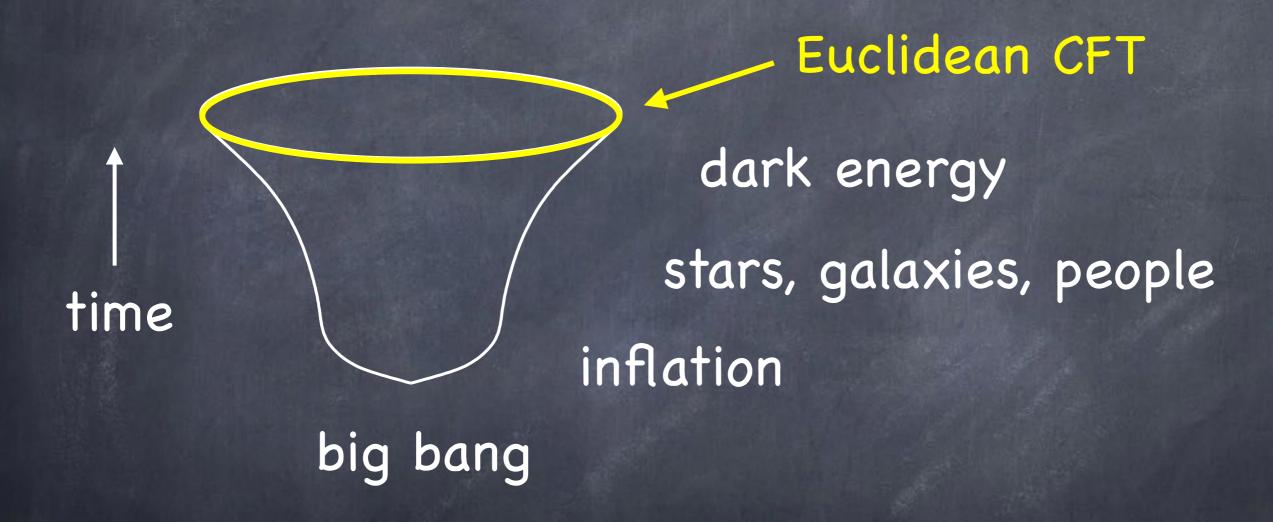
Maybe. Where's the boundary?











Our universe is approaching the symmetries of a Euclidean CFT.

We'd like to know

- * What's the CFT?
- \star Do formulas like $\phi = \int K \mathcal{O}$ describe everyday life?

Thank you!