Counting homogeneous Einstein metrics

Renato G. Bettiol

Joint work with Hannah Friedman

Homogeneous Einstein metrics

- $ightharpoonup (M^n, g)$ compact Riemannian manifold, $p \in M$
- ▶ $G \subset Iso(M^n, g)$ compact Lie group, acts transitively
- ▶ $H = \{g \in G : g \cdot p = p\}$ isotropy, so $M \cong G/H$
- ▶ Lie algebra $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, decompose \mathfrak{m} into H-irreducibles

$$T_pM \cong \mathfrak{m} = \underline{\mathfrak{m}_1 \oplus \ldots \oplus \mathfrak{m}_\ell}$$

- ► Assume $\mathfrak{m}_i \not\cong \mathfrak{m}_j$, for all $i \neq j$
- ▶ Then, all G-invariant Riemannian metrics g are of the form

$$\mathrm{g}_{\rho} \colon \mathit{T}_{\rho} M \to \mathit{T}_{\rho} M, \quad \mathrm{g}_{\rho} \, = \, \underline{\ x_1 \ \mathit{Q}|_{\mathfrak{m}_1} + \cdots + \mathit{x}_{\ell} \ \mathit{Q}|_{\mathfrak{m}_{\ell}}} \, ,$$

where $x_i > 0$ and Q is a fixed bi-invariant metric on G.

Ricci tensor of $g_{\rho}=x_1\ Q|_{\mathfrak{m}_1}+\cdots+x_{\ell}\ Q|_{\mathfrak{m}_{\ell}}$ is $(\mathsf{Ric_g})_{\rho}\colon\ T_{\rho}M o T_{\rho}M$,

$$(\mathsf{Ric}_{\mathsf{g}})_{p} = r_{1}(\mathbf{x}) \, x_{1} \, Q|_{\mathfrak{m}_{1}} + \dots + r_{\ell}(\mathbf{x}) \, x_{\ell} \, Q|_{\mathfrak{m}_{\ell}} \qquad \mathbf{x} = (x_{1}, \dots, x_{\ell})$$
$$= r_{1}(\mathbf{x}) \, g_{p}|_{\mathfrak{m}_{1}} + \dots + r_{\ell}(\mathbf{x}) \, g_{p}|_{\mathfrak{m}_{\ell}}$$

$$r_{i}(\mathbf{x}) = \frac{b_{i}}{2x_{i}} - \frac{1}{4d_{i}} \sum_{j,k=1}^{c} L_{ijk} \frac{2x_{k}^{2} - x_{i}^{2}}{x_{i} x_{j} x_{k}}$$

Laurent polynomials with "parameters" $b_i \geq 0, d_i > 0, L_{ijk} \geq 0$,

$$B|_{\mathfrak{m}_i} = -b_i \ Q|_{\mathfrak{m}_i}, \quad d_i \coloneqq \dim \mathfrak{m}_i, \quad L_{ijk} \coloneqq \sum_{\substack{\mathbf{v}_{lpha} \in \mathfrak{m}_i, \ \mathbf{v}_{eta} \in \mathfrak{m}_i \ \mathbf{v}_{\gamma} \in \mathfrak{m}_k}} Q([\mathbf{v}_{lpha}, \mathbf{v}_{eta}], \mathbf{v}_{\gamma})^2$$

 $\mathbf{b}=(b_i),\ \mathbf{d}=(d_i),\ L=(L_{ijk})$ depend on G/H and $\mathfrak{m}=\mathfrak{m}_1\oplus\cdots\oplus\mathfrak{m}_\ell$

Einstein:
$$\operatorname{\mathsf{Ric}}_{\operatorname{g}} = \operatorname{\mathscr{E}}^{1} \operatorname{\mathsf{g}} \iff r_{i}(\mathbf{x}) = \operatorname{\mathscr{E}}^{1}, \ \forall i$$

Natural questions

Existence

Does $r_1(\mathbf{x}) = \cdots = r_\ell(\mathbf{x}) = 1$ admit solutions $\mathbf{x} \in \mathbb{R}_+^\ell$?

Theorem (Wang-Ziller, 1986)

- ightharpoonup Yes, if $\mathfrak{h}\subset\mathfrak{g}$ is _____ maximal Lie subalgebra
- No, e.g., on G/H, where $H = SU(2) \subset Sp(2) \subset SU(4) = G$

And a lot more: Böhm, Böhm–Wang–Ziller, Dickinson–Kerr, \dots

Classification

Classify all solutions to $r_1(\mathbf{x}) = \cdots = r_{\ell}(\mathbf{x}) = 1$.

Known, e.g., if G/H is a CROSS, and a few other special cases

Finiteness Conjecture (Böhm-Wang-Ziller, 2004)

There are **finitely many** solutions to $r_1(\mathbf{x}) = \cdots = r_{\ell}(\mathbf{x}) = 1$.

Main results (Geometric version)

Theorem

If G/H is a compact homogeneous space whose isotropy representation $\mathfrak{m}=\mathfrak{m}_1\oplus\cdots\oplus\mathfrak{m}_\ell$ consists of ℓ pairwise inequivalent irreducible summands, then there are at most

$$D_{\ell-1} = \sum_{k=0}^{\ell-1} 2^k \binom{\ell-1}{k}^2$$

isolated G-invariant Einstein metrics g on G/H with $Ric_g = g$. All G-invariant Einstein metrics with $Ric_g = g$ are isolated if $E_A(scal) \neq 0$, so the Finiteness Conjecture holds in such cases.

"Central Delannoy numbers"

$$D_1 = 3,$$
 $D_2 = 13,$ $D_3 = 63,$ $D_4 = 321,$ $D_5 = 1683,$ $D_6 = 8989,$ $D_7 = 48639,$ $D_8 = 265729,$...

Main results (Algebraic version)

Theorem

- (i) For all **b**, **d**, and L, there are at most $D_{\ell-1}$ isolated solutions $\mathbf{x} \in (\mathbb{C}^*)^{\ell}$ to the Einstein equations $r_1(\mathbf{x}) = \cdots = r_{\ell}(\mathbf{x}) = 1$.
- (ii) For generic **b**, **d**, and L, all solutions to the Einstein equations are isolated and there are exactly $D_{\ell-1}$ solutions in $(\mathbb{C}^*)^{\ell}$.
- (iii) For each support A, there is a polynomial $E_A(scal)$ on **b**, **d**, and L such that $E_A(scal) \neq 0$ implies **b**, **d**, and L are generic.

$$r_i(\mathbf{x}) = \frac{b_i}{2x_i} - \frac{1}{4d_i} \sum_{j,k=1}^{\ell} L_{ijk} \frac{2x_k^2 - x_i^2}{x_i x_j x_k}, \quad i = 1, \dots, \ell$$

Support and Newton polytope

$$\mathbf{x} = (x_1, \dots, x_\ell) \in (\mathbb{C}^*)^\ell$$

 $\mathbf{a} = (a_1, \dots, a_\ell) \in \mathbb{Z}^\ell$

$$\mathbf{x}^{\mathbf{a}}\coloneqq x_1^{a_1}\dots x_\ell^{a_\ell}$$

. . . .

$$f(\mathbf{x}) = \sum_{\mathbf{a} \in \mathbb{Z}^{\ell}} c_{\mathbf{a}} \, \mathbf{x}^{\mathbf{a}},$$

Support:

$$\operatorname{\mathsf{supp}} f \coloneqq \{\mathbf{a} \in \mathbb{Z}^\ell : c_{\mathbf{a}} \neq 0\}$$

Define, for a Laurent polynomial

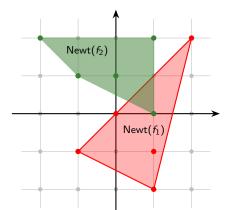
Newton polytope:

Newt(f) := conv(supp f)

Example

$$f_1(\mathbf{x}) = \frac{\sqrt{5}}{x_1 x_2} + 3 \frac{x_1}{x_2^2} - \frac{x_1}{x_2} + 1 - x_1^2 x_2^2$$

$$f_2(\mathbf{x}) = \frac{x_2^2}{x_1^2} + \frac{x_2}{x_1} - x_1 + 8x_2 + x_1x_2^2$$



Mixed volume

Given $P_1, \ldots, P_\ell \subset \mathbb{R}^\ell$ polytopes, $\lambda_1, \ldots, \lambda_\ell > 0$, the volume of

$$\lambda_1 P_1 + \cdots + \lambda_\ell P_\ell \coloneqq \left\{ \sum_{j=1}^\ell \lambda_j \, \mathbf{p}_j : \mathbf{p}_j \in P_j \right\}$$

is a homogeneous polynomial $V(\lambda_1,\ldots,\lambda_\ell)$ of degree ℓ .

Definition (Mixed volume)

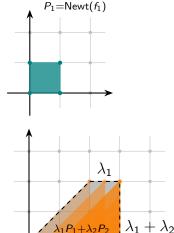
 $\mathsf{MV}(P_1,\ldots,P_\ell)$ is the coefficient of $\lambda_1\ldots\lambda_\ell$ in $V(\lambda_1,\ldots,\lambda_\ell)$.

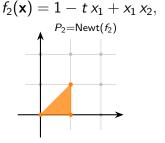
- ▶ P_j lattice polytopes \implies MV $(P_1, ..., P_\ell)$ is an integer.
- ▶ $\mathsf{MV}(P_1, \ldots, P_\ell)$ is the unique symmetric multilinear function such that $\mathsf{MV}(P, \ldots, P) = \ell! \; \mathsf{Vol}(P)$.

Example

$$f_1(\mathbf{x}) = 1 - x_1 - x_2 + x_1 x_2$$

 λ_1





$$V(\lambda_1, \lambda_2) = (\lambda_1 + \lambda_2)^2 - \frac{1}{2}\lambda_2^2$$
 $V(\lambda_1, \lambda_2) = \lambda_1^2 + \frac{2}{2}\lambda_1\lambda_2 + \frac{1}{2}\lambda_2^2$

 $t \neq 0$

$$\mathsf{MV}(P_1,P_2) = 2$$

Bernstein's Theorem

 $ightharpoonup \mathcal{F} = \{f_1, \dots, f_\ell \colon (\mathbb{C}^*)^\ell \to \mathbb{C}\}$ system of Laurent polynomials

$$ightharpoonup \mathbf{x} \in (\mathbb{C}^*)^\ell$$
 solution to $\mathcal{F} \iff f_1(\mathbf{x}) = \cdots = f_\ell(\mathbf{x}) = 0$

Bernstein's Theorem (1975), "BKK bound"

The system $\mathcal{F} = \{f_1, \dots, f_\ell\}$ of Laurent polynomials has at most $\mathsf{MV}(P_1, \dots, P_\ell)$ isolated solutions in $(\mathbb{C}^*)^\ell$, where $P_j = \mathsf{Newt}(f_j)$.

Example

$$f_1(\mathbf{x}) = 1 - x_1 - x_2 + x_1 x_2, \quad f_2(\mathbf{x}) = 1 - t x_1 + x_1 x_2,$$

$$MV(P_1, P_2) = \underline{2}$$
, provided $t \neq 0$.

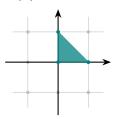
Solutions to
$$\mathcal{F}=\{f_1,f_2\}$$
: $\mathbf{x}=\begin{pmatrix} 1,\ t-1 \end{pmatrix}$ $\mathbf{x}=\begin{pmatrix} \frac{1}{t-1},\ 1 \end{pmatrix}$

If $t \neq 1$: \mathcal{F} has 2 solutions in $(\mathbb{C}^*)^2$ - BKK bound is achieved Even if $t \geq 0$ (multiplicity)

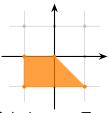
If t=1: ${\mathcal F}$ has 0 solutions in $({\mathbb C}^*)^2$ - BKK bound is not achieved

Example

$$f_1(\mathbf{x})=t+x_1-x_2,$$



$$f_2(\mathbf{x}) = \frac{1}{x_1 x_2} - \frac{1}{x_1} - \frac{x_1}{x_2} + t$$



$$MV(P_1, P_2) = \underline{2}$$
, provided $t \neq 0$. Solutions to $\mathcal{F} = \{f_1, f_2\}$:

$$\begin{vmatrix} |t| \neq 1 & \mathbf{x}_- = \left(\frac{-1 - t - \sqrt{5 + 2t + t^2}}{2}, \, \frac{-1 + t - \sqrt{5 + 2t + t^2}}{2}\right) \\ \mathbf{x}_+ = \left(\frac{-1 - t + \sqrt{5 + 2t + t^2}}{2}, \, \frac{-1 + t + \sqrt{5 + 2t + t^2}}{2}\right) \end{vmatrix}$$
 BKK is achieved (2 sol)
$$t = -1 \quad \mathbf{x}_- = (-1, -2), \, \mathbf{x}_+ = (1, 0) \notin (\mathbb{C}^*)^2 \text{ (1 sol)}$$
 BKK not achieved
$$t = 1 \quad \left\{ \mathbf{x} \in (\mathbb{C}^*)^2 : x_2 = 1 + x_1 \right\}$$
 (0 sol) BKK not achieved

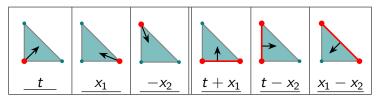
BKK not achieved (nongeneric) \iff some solution outside $(\mathbb{C}^*)^\ell$ or continuous family of solutions

Sufficient conditions to achieve BKK bound

$$lacksquare$$
 $\mathcal{F}=\{f_j\}_{j=1,...,\ell}, \quad P_j=\mathsf{Newt}\,(f_j), \quad f_j(\mathbf{x})=\sum_{\mathbf{a}\in\mathbb{Z}^\ell\cap P_i}c_{j,\mathbf{a}}\,\mathbf{x}^{\mathbf{a}}$

▶ Each $\mathbf{v} \in \mathbb{R}^{\ell} \setminus \{\mathbf{0}\}$ determines a face $F_{\mathbf{v}}(P_j)$ of P_j Facial system: $\mathcal{F}_{\mathbf{v}} = \{f_{j,\mathbf{v}}\}_{j=1,\dots,\ell}$, $f_{j,\mathbf{v}}(\mathbf{x}) = \sum_{\mathbf{a} \in \mathbb{Z}^{\ell} \cap F_{\mathbf{v}}(P_j)} c_{j,\mathbf{a}} \mathbf{x}^{\mathbf{a}}$

Example: $f(\mathbf{x}) = t + x_1 - x_2$



Bernstein's Other Theorem (1975)

Suppose that no facial system $\mathcal{F}_{\mathbf{v}}$ has solutions in $(\mathbb{C}^*)^{\ell}$. Then all solutions to \mathcal{F} are isolated and there are exactly $\mathsf{MV}(P_1,\ldots,P_{\ell})$

solutions to $\mathcal{F}.$

 \mathcal{F} has solutions outside $(\mathbb{C}^*)^\ell$ or continuous family of solutions

BKK bound for \mathcal{F} not achieved (nongeneric)

 $\implies \begin{array}{c} \text{Some } \mathcal{F}_{\boldsymbol{v}} \text{ has} \\ \text{solutions in } (\mathbb{C}^*)^{\ell} \end{array}$

Proof structure

Apply Bernstein's "Theorem" and "Other Theorem" to $\mathcal{F}=\{f_i\}$,

$$f_i(\mathbf{x}) = -1 + \underbrace{\frac{b_i}{2x_i} - \frac{1}{4d_i} \sum_{j,k=1}^{\ell} L_{ijk} \frac{2x_k^2 - x_i^2}{x_i x_j x_k}}_{p(\mathbf{x})}, \quad i = 1, \dots, \ell.$$

For nonzero **b**, **d**, *L*,

$$P_i = \mathsf{Newt}\left(f_i\right) = \mathsf{conv}\left(\mathbf{0}, \ \mathbf{e}_i - 2\mathbf{e}_j, \ \mathbf{e}_j - \mathbf{e}_i - \mathbf{e}_k : \ j, k = 1, \dots, \ell\right).$$

Main steps

- ightharpoonup Compute $\mathsf{MV}(P_1,\ldots,P_\ell)=D_{\ell-1}$
- Prove generic **b**, **d**, *L* are BKK generic, despite $L_{ijk} = L_{jki} = \dots$
- Some $\mathcal{F}_{\mathbf{v}}$ has solutions in $(\mathbb{C}^*)^\ell \implies E_A(\operatorname{scal}) = 0$.

Historical note

M. Graev also applied Bernstein's Theorems to Einstein equations.

$$P_i = \mathsf{Newt}\left(f_i\right) = \mathsf{conv}\left(\mathbf{0},\,\mathbf{e}_i - 2\mathbf{e}_j,\,\mathbf{e}_j - \mathbf{e}_i - \mathbf{e}_k:\,j,k = 1,\ldots,\ell
ight)$$

Theorem

$$\begin{aligned} \mathsf{MV}(P_1,\ldots,P_\ell) &= \ell! \, \mathsf{Vol}(P), \ P = P_1 \cup \cdots \cup P_\ell \\ &= \mathsf{conv}\big(\mathbf{0}, \, \mathbf{e}_i - 2\mathbf{e}_j : i,j = 1,\ldots,\ell\big) \end{aligned}$$

$$P$$
 is pyramid over a $\Longrightarrow Vol P = \begin{pmatrix} combinatorial formula \\ Postnikov, 2009 \end{pmatrix}$

Theorem

Homogeneous Einstein equations are critical equations of maximum likelihood estimation problem on a scaled toric variety.

- ▶ Key facial system is $\{r_i\}_{i=1,...,\ell}$, $r_i(\mathbf{x}) = -\frac{1}{d_i} x_i \frac{\partial \operatorname{scal}}{\partial x_i}$
- ► Principal A-determinant of scal is the A-resultant:
- $E_A(\mathsf{scal}) = \mathsf{Res}_A\left(x_1\, rac{\partial\,\mathsf{scal}}{\partial x_1},\, \ldots,\, x_\ell\, rac{\partial\,\mathsf{scal}}{\partial x_\ell}
 ight) = \prod_{F_1\,\mathsf{four}\,\mathsf{sf}\,P'} (\Delta_{F\cap A})^{lpha_F}$
- For given **b**, **d**, L, as $d_i > 0$,

 $\mathsf{scal}(\mathbf{x}) = d_1 \, r_1(\mathbf{x}) + d_2 \, r_2(\mathbf{x})$

 $r_1(\mathbf{x}) = \frac{b_1}{2x_1} - \frac{1}{4d_1} \left(\frac{L_{111}}{x_1} + \frac{2L_{112}x_2}{x_1^2} + \frac{2L_{122}}{x_1} - \frac{L_{122}x_1}{x_2^2} \right)$

 $r_2(\mathbf{x}) = \frac{b_2}{2x_2} - \frac{1}{4d_2} \left(\frac{L_{222}}{x_2} + \frac{2L_{122}x_1}{x_2^2} + \frac{2L_{112}}{x_2} - \frac{L_{112}x_2}{x_2^2} \right)$

$$E_A(\text{scal}) = \begin{vmatrix} L_{122} & L'_{222} & L'_{111} & L_{112} \\ & L_{122} & L'_{222} & L'_{111} & L_{112} \\ & & L_{122} & L'_{222} & L'_{111} & L_{112} \\ 3L_{122} & 2L'_{222} & L'_{111} & \\ & & 3L_{122} & 2L'_{222} & L'_{111} \\ & & 3L_{122} & 2L'_{222} & L'_{111} \end{vmatrix}$$
 where
$$L'_{111} = L_{111} + 2L_{122} - 2b_1d_1$$

$$L'_{222} = L_{222} + 2L_{112} - 2b_2d_2$$

If $\ell = 2$:

Q: For $\ell = 2$, finiteness holds if $d_i > 0$. Is the same true for $\ell \ge 3$?

Numeric solutions on full flag manifolds G/T

G	SU(3)	SU(4)	SU(5)	SU(6)	SO(5)	SO(7)	Sp(3)	SO(8)
ℓ	3	6	10	15	4	9	9	12
$D_{\ell-1}$	13	1 683	1 462 563	7.9×10^9	63	256 729	256 729	45 046 719
BKK Bound	4	80	9 168	6 603 008	12	5 376	5 232	239 744
$\#$ solutions in $(\mathbb{C}^*)^\ell$	4	59	7 908	5 037 448	10	4 224	4512	150 256
$\#$ solutions in $(\mathbb{R}^*)^\ell$	4	29	1 596	191 252	6	750	728	11 128
$\#$ solutions in \mathbb{R}^{ℓ}_+ , i.e., $\#$ G-invariant Einstein metrics on G/H	4	29	396	6572	6	48	64	184
# isometry classes of G-invariant Einstein metrics on G/H	2	4	12	35	2	5	4	5

using HomotopyContinuation.jl

Except for G = SU(3), the BKK bound is never achieved, thus, these systems are *not* generic.

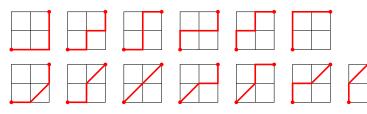
Q: Find more examples of G/H where BKK bound is achieved.

Central Delannoy number $D_m = \sum_{k=0}^{m} 2^k {m \choose k}^2$

Counts how many paths join opposite vertices of $m \times m$ grid, using only "right" \rightarrow , "up" \uparrow , "diagonal" \nearrow ; e.g.,

$$m = 1$$
:

$$m = 2$$
:



$$D_1 = 3$$
, $D_2 = 13$, $D_3 = 63$, $D_4 = 321$, $D_5 = 1683$, $D_6 = 8080$, $D_7 = 48630$, $D_8 = 26572$

 $D_5 = 1\,683, \quad D_6 = 8\,989, \quad D_7 = 48\,639, \quad D_8 = 265\,729, \quad \dots$