MAT175, Fall 2018

Practice Problems for Midterm 1

1. Compute the following limits, or explain why they do not exist:
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2. Compute the following limits at infinity, or explain why they do not exist:
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3. Sketch the graph of the function f(z) defined by

22 ifx <2
f(z) =
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Is f(z) continuous at all points?



4. Sketch the graph of the function f(x) defined by

e ifz<0
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cos(x) ifx>0

Is f(z) continuous at all points?

5. What is the value of a that makes the following function continuous at all points?
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6. Show that the derivative of f(z) = 2z + 3 is equal to f’(z) = 2 using the definition
as a limit of a difference quotient.

7. Show that the derivative of g(x) = 522 — x is equal to f/(z) = 10z — 1 using the
definition as a limit of a difference quotient.

8. Compute the first derivative of the following functions:
a) f(z) =1+3mzt — 22+ ¢

b) F(z) = % — 5z — 5/ + 5cos(x — 1)
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9. Find the tangent line to the graph of the functions below at the given point:
a) f(xr) =1+ 3nz — 2z + €%, at the point (0, 2)
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b) F(x) = = — /52 — 5y/x + 5cos(x — 1), at the point (1,2 — v/5)
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Suppose a particle moves along a straight line in such a way that its position (measured
as distance from the origin) is given by s(t) = t?> — 2v/t2 + 1 + ¢! at time ¢. Find the
velocity and acceleration of the particle when ¢t = 1.

If the position (measured as height from the ground) of an object thrown straight up
from an initial height of 32 feet is given by s(t) = —16t + 16t + 32 at time ¢, find both
the velocity and acceleration at the moment the object hits the ground.

The equation 22 +y3 +y = 1 implicitly defines a function y = y(x) near the point (1,0).
Find the equation of the tangent line to the curve 22 + 3 + y = 1 at the point (1,0).

Let f(z) = 23 + 2 — 2 and g(x) be its inverse function. Compute ¢’(0) and g”(0).



