Practice Problems for Midterm 2

1. Find all the critical points of the following functions:
a) $f(x)=x^{4}-4 x+1$
b) $f(x)=x^{3}-12 x+2$
c) $f(x)=x^{2}+x-5$
d) $f(x)=|x-2|$
e) $f(x)=\pi e^{x^{2}}$
f) $f(x)=2^{x}$
2. Determine where the functions in Problem 1 are increasing and decreasing.
3. Determine where the functions in Problem 1 are concave up and concave down.
4. Determine whether each critical point found in Problem 1 is a local minimum, a local maximum, or neither.
5. Find the global minimum and global maximum on the interval $I=[-3,3]$ of each of the functions in Problem 1.
6. What are the global minimum and global maximum of $f(x)=e^{x} \cos x$ on $I=[0,2 \pi]$?
7. Find all the local minima and local maxima of the function $f(x)=5 x^{4 / 5}-x^{2}$.
8. The height of a rectangle is increasing at a rate of $8 \mathrm{~cm} / \mathrm{s}$ and its width is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$.
a) When the height is 20 cm and the width is 10 cm , how fast is the area of the rectangle increasing?
b) When the height is 20 cm and the width is 10 cm , how fast is the perimeter of the rectangle increasing?
9. A page of a book is to have a total area of $150 \mathrm{~cm}^{2}$, with 1 cm margins at the top and sides and a 2 cm margin at the bottom. Find the dimensions in cm of the page that has largest possible printed area.
10. A boat is pulled in to a dock by a rope with one end attached to the front of the boat and the other end passing through a ring attached to the dock at a point 5 ft higher than the front of the boat. The rope is being pulled through the ring a'ate of $0.6 \mathrm{ft} / \mathrm{sec}$. How fast is the boat approaching the dock when 13 ft of rope are out?
11. Water is poured into a conical container at the rate of $10 \mathrm{~cm}^{3} / \mathrm{sec}$. The cone points directly down, and it has a height of 30 cm and a base radius of 10 cm . How fast is the water level rising when the water is 3 cm deep (at its deepest point)?

12. A square swimming pool will be built so that, when completely full, it will hold $32,000 \mathrm{~m}^{3}$ of water. What are the dimensions (depth and length of the sides) of the swimming pool that will cost the least to cover with tiles?
13. Compute the following indefinite integrals:
a) $\int x^{3}-3 x^{2}+x+1 \mathrm{~d} x$
b) $\int 2 \sin x-3 \cos x+5 \mathrm{~d} x$
c) $\int \frac{t^{4}+t^{2}+1}{\sqrt{t}} \mathrm{~d} t$
d) $\int e^{x}-x^{e} d x$
e) $\int \frac{3}{y}-\frac{y}{3} \mathrm{~d} y$
14. Compute the following definite integrals (you can use your answers to Problem 13):
a) $\int_{0}^{1} x^{3}-3 x^{2}+x+1 \mathrm{~d} x$
b) $\int_{0}^{\pi} 2 \sin x-3 \cos x+5 \mathrm{~d} x$
c) $\int_{1}^{4} \frac{t^{4}+t^{2}+1}{\sqrt{t}} \mathrm{~d} t$
d) $\int_{0}^{1} e^{x}-x^{e} \mathrm{~d} x$
e) $\int_{1}^{e} \frac{3}{y}-\frac{y}{3} \mathrm{~d} y$
15. Suppose that $\int_{0}^{7} f(x) \mathrm{d} x=8, \int_{5}^{8} f(x) \mathrm{d} x=1$, and $\int_{7}^{8} f(x) \mathrm{d} x=-2$. Compute $\int_{0}^{5} f(x) \mathrm{d} x$.
16. Find the area under the curve $y=6 x^{2}+2$ from $x=0$ to $x=2$.
17. Use Riemann sums to show that $\int_{0}^{1} x^{4} \mathrm{~d} x=\frac{1}{5}$, using the fact that

$$
\sum_{i=0}^{n} i^{4}=1^{4}+2^{4}+3^{4}+\cdots+n^{4}=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}
$$

18. Write, but do not evaluate, a (left) Riemann sum with 5 terms for the integral $\int_{1}^{2} \frac{\sin x}{x} \mathrm{~d} x$
19. Solve the Initial Value Problem

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-6 \cos x \\
y(0)=0
\end{array}\right.
$$

20. Solve the Initial Value Problem

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} s}{\mathrm{~d} t}=t^{1 / 3}+e^{t} \\
s(0)=\sqrt{3}
\end{array}\right.
$$

21. Compute the following derivatives:
a) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{0}^{x} \sqrt{1+t^{4}} \mathrm{~d} t$
b) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{0}^{x^{2}} \sqrt{1+t^{4}} \mathrm{~d} t$
c) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{-\pi}^{\cos x} 4 e^{s} \mathrm{~d} s$
d) $\frac{\mathrm{d}}{\mathrm{d} z} \int_{1}^{1 / z^{2}} \ln (y) \mathrm{d} y$
22. Use substitutions to compute the following indefinite integrals:
a) $\int 4 x \cos \left(x^{2}\right) \mathrm{d} x$
b) $\int x e^{-x^{2}} \mathrm{~d} x$
c) $\int z \sqrt{4-z^{2}} \mathrm{~d} z$
d) $\int e^{x} \sqrt{1-e^{x}} \mathrm{~d} x$
