Practice Problems for the Midterm Exam

1. Compute the following limits, or explain why they do not exist:
a) $\lim _{x \rightarrow 0} \frac{2 \sin (4 x)}{3 x}$
b) $\lim _{x \rightarrow \pi / 2} \frac{2 \sin (4 x)}{3 x}$
c) $\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}$
d) $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+8}{x-2}$
e) $\lim _{a \rightarrow 3} \frac{\sqrt{a+1}-2}{a+3}$
f) $\lim _{a \rightarrow 3} \frac{\sqrt{a+1}-2}{a-3}$
g) $\lim _{t \rightarrow 0} t^{2} \cos \left(\frac{\pi}{t}\right)$
2. Compute the following limits at infinity, or explain why they do not exist:
a) $\lim _{x \rightarrow+\infty} \frac{\sin (x)}{x}$
b) $\lim _{x \rightarrow+\infty} \frac{x^{3}+2 x+1}{x^{2}-1}$
c) $\lim _{x \rightarrow-\infty} \frac{x^{3}+2 x+1}{x^{2}-1}$
d) $\lim _{x \rightarrow+\infty} \frac{3 x^{5}+x^{3}+x+1}{4 x^{5}-x^{2}-8}$
e) $\lim _{x \rightarrow-\infty} \frac{3 x^{5}+x^{3}+x+1}{4 x^{5}-x^{2}-8}$
f) $\lim _{x \rightarrow+\infty} \frac{x^{3}+2 x^{2}+1}{-2 x^{7}+3 x^{4}+x^{2}}$
g) $\lim _{x \rightarrow-\infty} \frac{x^{3}+2 x^{2}+1}{-2 x^{7}+3 x^{4}+x^{2}}$
3. Sketch the graph of the function $f(x)$ defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 2 \\ 2-x & \text { if } x>2\end{cases}
$$

Is $f(x)$ continuous at all points?
4. Sketch the graph of the function $f(x)$ defined by

$$
f(x)= \begin{cases}e^{x} & \text { if } x \leq 0 \\ \cos (x) & \text { if } x>0\end{cases}
$$

Is $f(x)$ continuous at all points?
5. What is the value of a that makes the following function continuous at all points?

$$
f(x)= \begin{cases}\frac{2 \sin (a x)}{x} & \text { if } x \leq 0 \\ x+a^{2}+1 & \text { if } x>0\end{cases}
$$

6. Show that the derivative of $f(x)=2 x+3$ is equal to $f^{\prime}(x)=2$ using the definition as a limit of a difference quotient.
7. Show that the derivative of $g(x)=5 x^{2}-x$ is equal to $f^{\prime}(x)=10 x-1$ using the definition as a limit of a difference quotient.
8. Compute the first derivative of the following functions:
a) $f(x)=1+3 \pi x^{4}-2 x+e^{x}$
b) $F(x)=\frac{2}{x}-\sqrt{5} x-5 \sqrt{x}+5 \cos (x-1)$
c) $g(t)=\frac{1}{\sqrt{2 t+2}}-t e^{2 t+1}-\tan \left(4 t^{2}+\frac{\pi}{4}\right)$
d) $A(\theta)=3 \sin \theta \cos \theta+e^{\theta} \cos (5 \theta)$
e) $q(s)=\frac{e^{s^{2}+1}-\sin (\sqrt{s})}{s^{2}+1}$
9. Find the tangent line to the graph of the functions below at the given point:
a) $f(x)=1+3 \pi x^{4}-2 x+e^{x}$, at the point $(0,2)$
b) $F(x)=\frac{2}{x}-\sqrt{5} x-5 \sqrt{x}+5 \cos (x-1)$, at the point $(1,2-\sqrt{5})$
c) $g(t)=\frac{1}{\sqrt{2 t+2}}-t e^{2 t+1}-\tan \left(4 t^{2}+\frac{\pi}{4}\right)$, at the point $\left(0, \frac{1}{\sqrt{2}}-1\right)$
d) $A(\theta)=3 \sin \theta \cos \theta+e^{\theta} \cos (5 \theta)$, at the point $(0,1)$
e) $q(s)=\frac{e^{s^{2}+1}-\sin (\sqrt{s})}{s^{2}+1}$, at the point $(0, e)$
10. Suppose a particle moves along a straight line in such a way that its position (measured as distance from the origin) is given by $s(t)=t^{2}-2 \sqrt{t^{2}+1}+e^{t}$ at time t. Find the velocity and acceleration of the particle when $t=1$.
11. If the position (measured as height from the ground) of an object thrown straight up from an initial height of 32 feet is given by $s(t)=-16 t^{2}+16 t+32$ at time t, find both the velocity and acceleration at the moment the object hits the ground.
12. The equation $x^{2}+y^{3}+y=1$ implicitly defines a function $y=y(x)$ near the point $(1,0)$. Find the equation of the tangent line to the curve $x^{2}+y^{3}+y=1$ at the point $(1,0)$.
13. Let $f(x)=x^{3}+x-2$ and $g(x)$ be its inverse function. Compute $g^{\prime}(0)$ and $g^{\prime \prime}(0)$.
14. A ladder 15 ft long is resting against a vertical wall. The bottom of the ladder is sliding away from the wall at a speed of 3 ft per second. When the base of the ladder is 12 ft away from the wall, how fast is the top sliding down the wall?
15. A boat is pulled in to a dock by a rope with one end attached to the front of the boat and the other end passing through a ring attached to the dock at a point 5 ft higher than the front of the boat. The rope is being pulled through the ring at a rate of 0.6 $\mathrm{ft} / \mathrm{sec}$. How fast is the boat approaching the dock when 13 ft of rope are out?
16. Water is poured into a conical container at the rate of $10 \mathrm{~cm}^{3} / \mathrm{sec}$. The cone points directly down, and it has a height of 30 cm and a base radius of 10 cm . How fast is the water level rising when the water is 3 cm deep (at its deepest point)?

