Homework Set 13

Due: Dec 9, 2019 (AT The beginning of Class)

To be handed in:

Please write your solution to Problem 1 on a single sheet of paper!

1. Use Green's Theorem to compute the following line integrals (all curves are oriented counter-clockwise):
a) $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$, where γ is the boundary of the region enclosed by $y=x^{2}$ and $x=y^{2}$, and $\vec{F}=\left(y+e^{\sqrt{x}}, 2 x+\cos \left(y^{2}\right)\right)$.
b) $\int_{\gamma} x y \mathrm{~d} x+2 x^{2} \mathrm{~d} y$, where γ consists of the line segment joining $(-2,0)$ to $(2,0)$ and the semicircle $x^{2}+y^{2}=4, y \geq 0$.
c) $\int_{\gamma}\left(x y+e^{x^{2}}\right) \mathrm{d} x+\left(x^{2}-\ln (1+y)\right) \mathrm{d} y$, where γ is the closed curve formed by the line segment joining $(0,0)$ to $(\pi, 0)$ and $y=\sin x$.

NOT to be handed in (but recommended for you to practice with):
2. Textbook (5th edition) Section 15.4, Exercises 7-10, 47-49

