Homework Set 11

Due: May 11, 2020 (1:00pm EDT via Blackboard)

To be handed in:

Please write your solution to Problem 1 on a single sheet of paper!

1. Compute the line integrals of the following vector fields $\vec{F}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Remember that if the vector field is conservative, then this computation is substantially easier using a potential function. However, if the vector field is not conservative, then the parametrization of the curve must be used.
a) $\vec{F}(x, y)=\left(x^{2} y, x y^{2}\right)$, $\gamma(t)=(\cos t, \sin t), \quad t \in[0,2 \pi]$
b) $\vec{F}(x, y, z)=\left(z e^{y}, 2 x \sin (z), x+z+1\right)$, $\gamma(t)=\left(t^{2}+1, t, 0\right), \quad t \in[0,1]$
c) $\vec{F}(x, y)=\left(e^{x} \cos y,-e^{x} \sin y\right)$, $\gamma(t)=\left(\left(1+(-1)^{t}\right) \cos \left(t^{6}-4 t^{2}+\ln t\right), \pi t\right), \quad t \in[3,5]$

Hint: Note that the above vector fields are exactly the same as those you analyzed in HW10.

NOT to be handed in (but recommended for you to practice with):
2. Textbook (5th edition) Section 15.2, Exercises 2, 3, 39, 40, 45, 46, 77
3. Textbook (5th edition) Section 15.4, Exercises 7-10, 47-49

