MAT 226 Lecture 25 5/4/2020
Necall:
$$\vec{F}: \mathcal{I} \subset \mathbb{R}^{n} \to \mathbb{R}^{n}$$
 vector field
 $\gamma:[a,b] \to \mathcal{I}$ smooth curve
 $\int_{\gamma} \vec{F} d\gamma = \int_{a}^{b} (\vec{F}[\gamma(t)], \gamma'(t)) > dt. = Work done by
under moving
along trajectory γ
Fundamental Theorem of Colculus (Baby version):
 $\int_{a}^{b} f(t) dt = F(b) - F(a)$ where $F'(t) = f(t)$
Fundamental Theorem of Calculus (Line integral):
Let $\vec{F} = \nabla \phi$ be a conservative vector field. Then
given any smooth curve $\gamma: [a,b] \to \mathcal{I}$, we have:
(*) $\int_{\gamma} \vec{F} d\gamma = \phi(\gamma(b)) - \phi(\gamma(a))$
Very important to observe:
RHS of (x) does not depend on the
youth γ , but only on its endpoints $\gamma(a), \gamma(b)$$

Cor: If
$$\vec{F}$$
 is conservative, then $\int_{V} \vec{F} ds$ depends
only on the endpoints of \mathfrak{F} and not on
 \mathfrak{F} itself.
 $\int_{\mathcal{F}} \vec{F} ds = \int_{\mathcal{K}} \vec{F} ds = \int_{V} \vec{F} ds =$

To see that
$$\vec{F}(x_{11}) = \begin{pmatrix} x_{11}^{2}, x_{21}^{2} \end{pmatrix}$$
 is conservative;

$$\int \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{\partial}{\partial y} \begin{pmatrix} x_{12}^{2} \end{pmatrix} - \frac{\partial}{\partial x} \begin{pmatrix} x_{21}^{2} \end{pmatrix} = 2xy - 2xy = 0$$

$$\mathcal{D} = \mathbb{R}^{2} \quad \text{is simply-connected}$$

$$\vec{F} \text{ is conservative, i.e. } \exists \phi: \mathcal{D} \to \mathbb{R} \quad \text{s.t. } \vec{F} = \nabla \phi.$$

$$(X_{11}) = \int x_{12}^{2} dx + g(y) = \frac{x_{12}^{2}}{2} + g(y)$$

$$\frac{\partial \phi}{\partial y} = x_{21}^{2} + g'(y) \stackrel{!}{=} x_{21}^{2} \implies g'(y) = 0$$

$$\Rightarrow g(y) = c.$$
So $\phi(x_{11}) = \frac{x_{12}^{2}}{2} + c \text{ is a potential for } \vec{F}, \text{ hence}$

$$\int_{\mathcal{B}_{1}} \vec{F} dy_{1} = \int_{\mathcal{B}_{2}} \vec{F} dy_{2} = \int_{\mathcal{B}_{3}} \vec{F} dy_{2} = \phi(1, 1) - \phi(0, 0)$$

$$= \left(\frac{1}{2} + c\right) - \left(\frac{0}{2} + c\right) = \frac{1}{12}$$

Verifying that
$$\int_{(0,0)}^{(1,1)} \vec{F} = \frac{1}{2} \text{ for a specific path } y_1(t).$$

$$\int_{(0,0)}^{(1,1)} = 0 \quad y_1(t) = (1-t) P + t Q$$

$$= (1-t)(0,0) + t(1,1)$$

$$= (t,t), \quad t \in [0,1]$$

$$y_1(t) = (1,1).$$

$$\int_{(0,0)}^{T} \vec{F} ds = \int_{0}^{1} \langle \vec{F}(\tau_{0}(t)), \tau_{1}(t) \rangle dt = \int_{0}^{1} \langle (t^{3}, t^{3}), (1,1) \rangle dt$$

$$= \int_{0}^{1} Qt^{3} dt = Q \int_{0}^{1} t^{3} dt = 2 \cdot \frac{t^{4}}{4} \Big|_{0}^{1} = \frac{2}{4} = \frac{1}{2}$$
Exercise: Try doing the same along the path $\tau_{2}(t)$ to see that the line integral gives $\frac{1}{2}$.
Theorem: Let $\vec{F}: \mathcal{L} \subset \mathbb{R}^{n} \to \mathbb{R}^{n}$ be a vector field. The following are equivalent:
(i) $\exists \phi \ s.t. \ \vec{F} = \nabla \phi$, (e, \vec{F} is conservative
(ii) $\int_{0}^{1} \vec{F} dx = 0$ for all closed paths α .

Statch of
$$rt$$
: (i) \Rightarrow (ii) is the F.T.C. (Live Integrals)

$$\int_{Y} \overline{v}\phi \, dY = \phi(\overline{v}(b)) - \phi(\overline{v}(a))$$
(ii) \Rightarrow (iii) Since $\int_{Y} \overline{F} \, dy \, depands \, ould
(ii) \Rightarrow (iii) Since $\int_{Y} \overline{F} \, dy \, depands \, ould
$$\int_{P} \overline{F} \, dy = 0 \text{ and the}$$
this is the constant curve $\overline{r}(t) = P$
curve $\overline{r}(t) = P, te[0,1]$ has the same subjoints

$$\int_{Q} \overline{F} \, dt = \int_{Q} \overline{F}(P, \overline{Q}) \, dt = 0.$$
Next: (ii) \Rightarrow (i). To construct a potential

$$\phi: \mathcal{R} \to |\mathcal{R}| \text{ for } \overline{F}, \text{ proceed as follows;}$$

$$- Chaose an "origin" $O \in \mathcal{R}$

$$= Given P \in \mathcal{R}, defone$$

$$\phi(P) = \int_{Q} \overline{F} = Where we$$
use any curve joining 0 to

$$P \to Compute the above line integral. This is well off
because (ii) holds.$$$$$$

Finally $(ii) \implies (ii)$. Need to show that given P, S ES and p (t) Q p (t) (t) poeths J(t), n(t) from P to Q, $\int_{\mathcal{S}} \vec{F} \, dy = \int_{\mathcal{Y}} \vec{F} \, dy$ Consider & to be the concatenation of I and -N, which is a closed parth. By (iii), $0 = \int_{\alpha} \vec{F} d\alpha = \int_{0} \vec{F} d\gamma + \int_{-\gamma} \vec{F} d\eta$ $= \int_{Y} \vec{F} dY - \int_{Y} \vec{F} d\eta$ $S_{0} \int_{\mathcal{X}} \vec{F} dx = \int_{\mathcal{Y}} \vec{F} dy.$ \Box Added offer the video: The only details I shipped were to show that $\phi(P) = \int_{0}^{P} \vec{F}$ is actually a potential for \vec{F} , that is, satisfies $\nabla \phi = \vec{F}$, and this is where "most" of the work is in proving the above theorem.

Revise thing the example of
$$\overline{F}: \mathbb{R}^2 \setminus \frac{1}{(0,0)} \to \mathbb{R}^2$$
 given by
 $\overline{F}(x,y) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$. (1) $\mathcal{R} = \mathbb{R}^2 \setminus \frac{1}{(0,0)}$ is not
is not
is not
simply connected.
From last lecture:
 $\int_{\mathcal{X}} \overline{F} \, d\mathcal{X} = \mathcal{Q} \pi$ where $\mathcal{Y}(t)$ is a
Circle of readius \mathcal{R}
centered at the origin.
 $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 0$.

By the above theorem, since
$$\int_{\mathcal{Y}} \vec{F} d\mathcal{Y} \neq 0$$
 for some closed path \mathcal{X} , (iii) does not hold. Hence (i) also does not hold, that is, $\nexists \phi$ such that $\vec{F} = D\phi$.
This shows that \vec{F} is not conservative.

Note: This example shows that the hypothesis
of
$$\Sigma$$
 being simply connected is necessory on
the Theorem that states "if Σ is simply conn.
then $\vec{F} = (M, N)$ on Σ is conservative if and only
 $\vec{F} = (M, N)$ on Σ is conservative if and only
 $\vec{F} = (M, N) = 0$,