Solutions to Homework Set 1

1. Use the Archimedean property of \mathbb{R} to rigorously prove that

$$\inf\left\{\frac{1}{n}: n \in \mathbb{N}\right\} = 0.$$

Remember that this entails proving 2 things:

- 0 is a lower bound for the set $E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\};$
- no real number larger than 0 is a lower bound for E, i.e., 0 is the *largest* possible lower bound.

Hint: I "argued" the above in Lecture 1 (Video 6), but, if you pay close attention, you will note that the Archimedean property must be used to make that rigorous.

Solution:

Claim 1: 0 is a lower bound for the set
$$E = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
.
Proof of Claim 1: For all $n \in \mathbb{N}$, we clearly have that $\frac{1}{n} > 0$.

Claim 2: No real number larger than 0 is a lower bound for E.

Proof of Claim 2: Suppose, by contradiction, that x > 0 is a lower bound for E. By the Archimedean property, there exists $n \in \mathbb{N}$ such that nx > 1. Thus, $x > \frac{1}{n} \in E$, which contradicts the assertion that x is a lower bound for E.

From the above Claims 1 and 2, it follows that $\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = 0.$

2. Let $A, B \subset \mathbb{R}$ be subsets bounded from below and from above, such that $A \subset B$. Prove that

$$\inf B \le \inf A \le \sup A \le \sup B.$$

Give examples to show that some (which?) inequalities above might be equalities even if A and B do not coincide.

Solution: First of all, all the quantities in the desired chain of inequalities exist because A and B are bounded from below and from above. Since $A \subset B$, every lower bound for B is also a lower bound for A. Indeed, if $\alpha \in \mathbb{R}$ is such that $\alpha \leq b$ for all $b \in B$, then also clearly $\alpha \leq a$ for all $a \in A$. In particular, the largest lower bound, A, if B, for the set B is also a lower bound for A. Since A is the largest lower bound for A, it follows that A halogously, every upper bound for B is an upper bound for A, and so is the least such upper bound, B. Since A is the smallest among the upper bounds for A, it follows that A is a lower bound for A while A is an upper bound for A.

Finally, each one of the above inequalities may (individually) be an equality even if the sets do not coincide; e.g., consider the intervals A = (0,1) and B = [0,1]. Clearly, $\inf A = \inf B = 0$ and $\sup A = \sup B = 1$, but $A \neq B$, since $0 \in B$ but $0 \notin A$. The middle inequality can obviously be an equality without having A = B, e.g., take $A = \{1/2\}, B = [0,1].$

3. A function $f: X \to \mathbb{R}, X \subset \mathbb{R}$, is called *bounded* if its image $\{f(x) : x \in X\}$ is a bounded set. In that case, we define $\sup f$ as its supremum, that is:

$$\sup f := \sup_{x \in X} f(x) = \sup \{ f(x) : x \in X \}.$$

Prove each the following statements:

1. If $f, g: X \to \mathbb{R}$ are bounded functions, then so is their sum $(f + g): X \to \mathbb{R}$;

2. $\sup(f+g) \le \sup f + \sup g;$

Solution:

1. From the hypothesis that f and g are bounded, there exist $M, N \in \mathbb{R}$ such that $|f(x)| \leq M$ and $|g(x)| \leq N$, for all $x \in X$. In particular, $|(f+g)(x)| = |f(x)+g(x)| \leq |f(x)|+|g(x)| \leq M+N$ for all $x \in X$. Thus, $(f+g): X \to \mathbb{R}$ is a bounded function. 2. By the above item, the image $A = \{f(x) + g(x) : x \in X\}$ of $(f+g): X \to \mathbb{R}$ is bounded (and it is nonempty since $X \neq \emptyset$). Thus, $\sup(f+g) = \sup A$ exists. Define

$$B = \{ f(x) + g(y) : x, y \in X \},\$$

and note that $A \,\subset B$, so, by the previous exercise, $\sup A \leq \sup B$. It remains only to prove that $\sup B = \sup f + \sup g$. First, $\sup f + \sup g$ is an upper bound for B, since given $x, y \in X$, $f(x) + g(y) \leq \sup f + \sup g$ because $\sup f$ is an upper bound for all numbers of the form $f(x), x \in X$, and $\sup g$ is an upper bound for all numbers g(y), $y \in X$. Second, $\sup f + \sup g$ is the least such upper bound. If not, then there would exist $\beta < \sup f + \sup g$ with $\beta \geq f(x) + g(y)$ for all $x, y \in X$. Let $r := \sup f + \sup g - \beta > 0$, and observe that $(\sup f) - \frac{r}{2} < \sup f$ is smaller than the smallest upper bound for the image of f(x), so there exists $x_0 \in X$ such that $f(x_0) > (\sup f) - \frac{r}{2}$. Similarly, $(\sup g) - \frac{r}{2} < \sup g$ hence there exists $y_0 \in X$ such that $g(y_0) > (\sup g) - \frac{r}{2}$. Altogether,

$$f(x_0) + g(y_0) > \sup f + \sup g - r = \beta,$$

which contradicts the above assertion that $\beta \ge f(x) + g(y)$ for all $x, y \in X$. This implies that $\sup f + \sup g$ is the least upper bound of B, so it is equal to $\sup B$, as desired. \Box

4. Give an example of functions f and g as in the previous exercise, such that only the *strict* inequality holds, i.e., $\sup(f + g) < \sup f + \sup g$.

Solution: Let X = [-1, 1], f(x) = x, g(x) = -x. Clearly, $\sup f = \sup g = 1$ but $\sup(f+g) = 0$.