Solutions to Homework Set 1

1. Use the Archimedean property of \mathbb{R} to rigorously prove that

$$
\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0
$$

Remember that this entails proving 2 things:

- 0 is a lower bound for the set $E=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$;
- no real number larger than 0 is a lower bound for E, i.e., 0 is the largest possible lower bound.

Hint: I "argued" the above in Lecture 1 (Video 6), but, if you pay close attention, you will note that the Archimedean property must be used to make that rigorous.

Solution:

Claim 1: 0 is a lower bound for the set $E=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Proof of Claim 1: For all $n \in \mathbb{N}$, we clearly have that $\frac{1}{n}>0$.
Claim 2: No real number larger than 0 is a lower bound for E.
Proof of Claim 2: Suppose, by contradiction, that $x>0$ is a lower bound for E. By the Archimedean property, there exists $n \in \mathbb{N}$ such that $n x>1$. Thus, $x>\frac{1}{n} \in E$, which contradicts the assertion that x is a lower bound for E.
From the above Claims 1 and 2, it follows that $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$.
2. Let $A, B \subset \mathbb{R}$ be subsets bounded from below and from above, such that $A \subset B$. Prove that

$$
\inf B \leq \inf A \leq \sup A \leq \sup B
$$

Give examples to show that some (which?) inequalities above might be equalities even if A and B do not coincide.
Solution: First of all, all the quantities in the desired chain of inequalities exist because A and B are bounded from below and from above. Since $A \subset B$, every lower bound for B is also a lower bound for A. Indeed, if $\alpha \in \mathbb{R}$ is such that $\alpha \leq b$ for all $b \in B$, then also clearly $\alpha \leq a$ for all $a \in A$. In particular, the largest lower bound, $\inf B$, for the set B is also a lower bound for A. Since $\inf A$ is the largest lower bound for A, it follows that $\inf B \leq \inf A$. Analogously, every upper bound for B is an upper bound for A, and so is the least such upper bound, $\sup B$. Since $\sup A$ is the smallest among the upper bounds for A, it follows that $\sup A \leq \sup B$. The middle inequality is obvious, since $\inf A$ is a lower bound for A while $\sup A$ is an upper bound for A.
Finally, each one of the above inequalities may (individually) be an equality even if the sets do not coincide; e.g., consider the intervals $A=(0,1)$ and $B=[0,1]$. Clearly, $\inf A=\inf B=0$ and $\sup A=\sup B=1$, but $A \neq B$, since $0 \in B$ but $0 \notin A$. The middle inequality can obviously be an equality without having $A=B$, e.g., take $A=\{1 / 2\}, B=[0,1]$.
3. A function $f: X \rightarrow \mathbb{R}, X \subset \mathbb{R}$, is called bounded if its image $\{f(x): x \in X\}$ is a bounded set. In that case, we define $\sup f$ as its supremum, that is:

$$
\sup f:=\sup _{x \in X} f(x)=\sup \{f(x): x \in X\}
$$

Prove each the following statements:

1. If $f, g: X \rightarrow \mathbb{R}$ are bounded functions, then so is their sum $(f+g): X \rightarrow \mathbb{R}$;
2. $\sup (f+g) \leq \sup f+\sup g$;

Solution:

1. From the hypothesis that f and g are bounded, there exist $M, N \in \mathbb{R}$ such that $|f(x)| \leq M$ and $|g(x)| \leq N$, for all $x \in X$. In particular, $|(f+g)(x)|=|f(x)+g(x)| \leq$ $|f(x)|+|g(x)| \leq M+N$ for all $x \in X$. Thus, $(f+g): X \rightarrow \mathbb{R}$ is a bounded function.
2. By the above item, the image $A=\{f(x)+g(x): x \in X\}$ of $(f+g): X \rightarrow \mathbb{R}$ is bounded (and it is nonempty since $X \neq \emptyset$). Thus, $\sup (f+g)=\sup A$ exists. Define

$$
B=\{f(x)+g(y): x, y \in X\},
$$

and note that $A \subset B$, so, by the previous exercise, $\sup A \leq \sup B$. It remains only to prove that $\sup B=\sup f+\sup g$. First, $\sup f+\sup g$ is an upper bound for B, since given $x, y \in X, f(x)+g(y) \leq \sup f+\sup g$ because $\sup f$ is an upper bound for all numbers of the form $f(x), x \in X$, and $\sup g$ is an upper bound for all numbers $g(y)$, $y \in X$. Second, $\sup f+\sup g$ is the least such upper bound. If not, then there would exist $\beta<\sup f+\sup g$ with $\beta \geq f(x)+g(y)$ for all $x, y \in X$. Let $r:=\sup f+\sup g-\beta>0$, and observe that $(\sup f)-\frac{r}{2}<\sup f$ is smaller than the smallest upper bound for the image of $f(x)$, so there exists $x_{0} \in X$ such that $f\left(x_{0}\right)>(\sup f)-\frac{r}{2}$. Similarly, $(\sup g)-\frac{r}{2}<\sup g$ hence there exists $y_{0} \in X$ such that $g\left(y_{0}\right)>(\sup g)-\frac{r}{2}$. Altogether,

$$
f\left(x_{0}\right)+g\left(y_{0}\right)>\sup f+\sup g-r=\beta,
$$

which contradicts the above assertion that $\beta \geq f(x)+g(y)$ for all $x, y \in X$. This implies that $\sup f+\sup g$ is the least upper bound of B, so it is equal to $\sup B$, as desired.
4. Give an example of functions f and g as in the previous exercise, such that only the strict inequality holds, i.e., $\sup (f+g)<\sup f+\sup g$.
Solution: Let $X=[-1,1], f(x)=x, g(x)=-x$. Clearly, $\sup f=\sup g=1$ but $\sup (f+g)=0$.

