Homework Set 2

DuE: SEP 23, 2020 (VIA Blackboard, BY 11.59PM)

To be handed in:

Please remember that all problems will be graded!

1. Decide whether each of the following subsets of \mathbb{R} is countable or uncountable and give a rigorous proof of your claim.
(a) $\mathbb{R} \backslash \mathbb{Q}=\{x \in \mathbb{R}: x$ is irrational $\}$
(b) $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$

Side note: $\mathbb{Q}(\sqrt{2})$ is a field! (But it does not have the least upper bound property.)
2. Given three distinct natural numbers $a, b, c \in \mathbb{N}$, construct a bounded set $X \subset \mathbb{R}$ such that a, b, and c are the only limit points of X, and none of them belong to X.
3. Let (X, d) be any metric space. Prove that

$$
\bar{d}(x, y):=\frac{d(x, y)}{1+d(x, y)}, \quad x, y \in X
$$

is also a distance function on X, i.e., prove that (X, \bar{d}) is also a metric space.
4. The diameter of a metric space (X, d) is defined to be:

$$
\operatorname{diam}(X, d):=\sup \{d(x, y): x, y \in X\}
$$

Compute the following diameters, justifying your answer:
(a) $\operatorname{diam}\left(\mathbb{R}^{n}, d\right)$, where d is the usual (Euclidean) distance;
(b) $\operatorname{diam}\left(\mathbb{R}^{n}, \bar{d}\right)$, where \bar{d} is the distance defined in the previous exercise, with d still being the usual (Euclidean) distance.
5. Use the Heine-Borel Theorem to prove the following about compact sets in \mathbb{R}^{n} :
(a) The union of finitely many compact sets in \mathbb{R}^{n} is compact;
(b) The intersection of any collection of compact sets in \mathbb{R}^{n} is compact.

