
MAT320/640, Fall 2020 Renato Ghini Bettiol

Solutions to Homework Set 2

1. Decide whether each of the following subsets of R is countable or uncountable and give
a rigorous proof of your claim.

(a) R \Q = {x ∈ R : x is irrational}
(b) Q(

√
2) =

{
a+ b

√
2 : a, b ∈ Q

}
Side note: Q(

√
2) is a field! (But it does not have the least upper bound property.)

Solution:

(a) The set R\Q of irrational numbers is uncountable. We proved in Lecture 3 (Video 6)
that Q is countable, and in Lecture 6 (Video 2) that R is uncountable. If R \ Q was
countable, then R = Q ∪ (R \ Q) would also be countable, because it would be a union
of finitely many countable sets. Thus, R \Q is uncountable.

(b) The set Q(
√

2) is countable. Indeed, there is a bijection φ : Q×Q→ Q(
√

2), given
by φ(a, b) = a+b

√
2, and we established in Lecture 3 (Video 5) that the (finite) cartesian

product of countable sets, such as Q×Q, is countable.

2. Given three distinct natural numbers a, b, c ∈ N, construct a bounded set X ⊂ R such
that a, b, and c are the only limit points of X, and none of them belong to X.

Solution:

Let X =
{
a+ 1

n : n ∈ N, n ≥ 2
}
∪
{
b+ 1

m : m ∈ N,m ≥ 2
}
∪
{
c+ 1

r : r ∈ N, r ≥ 2
}
.

Clearly, a is a limit point of X, since for any ε > 0, by the Archimedean property, there
exists n ∈ N, n ≥ 2, such that 1

n < ε, and hence a+ 1
n ∈ (a, a+ ε). Similarly, b and c

are limit points of X. Aside from a, b, c, there is no other x ∈ R which is a limit point
of X, since the distance from any x ∈ R \ (X ∪ {a, b, c}) to X is a (strictly) positive
number. Finally, X ∩{a, b, c} = ∅ by construction, since {a, b, c} ⊂ N and X ∩N = ∅.

3. Let (X, d) be any metric space. Prove that

d(x, y) :=
d(x, y)

1 + d(x, y)
, x, y ∈ X

is also a distance function on X, i.e., prove that (X, d) is also a metric space.

Solution:

We need to verify that d satisfies the following 3 properties:

(i) d(x, y) > 0 if x 6= y and d(x, y) = 0 if and only if x = y.

Since d(x, y) > 0 if x 6= y, then also d(x,y)
1+d(x,y) > 0 if x 6= y. Moreover, d(x,y)

1+d(x,y) = 0 if

and only if d(x, y) = 0, which holds if and only if x = y.

(ii) d(x, y) = d(y, x)



This follows immediately from the assumption that d(x, y) = d(y, x), namely:

d(x, y) =
d(x, y)

1 + d(x, y)
=

d(y, x)

1 + d(y, x)
= d(y, x).

(iii) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

First, observe that if a, b, c ≥ 0, then:

a ≤ b+ c =⇒ a ≤ b+ c+ 2bc+ abc

=⇒ a+ ab+ ac+ abc ≤ (b+ ab+ bc+ abc) + (c+ ac+ bc+ abc)

=⇒ a(1 + b)(1 + c) ≤ b(1 + a)(1 + c) + c(1 + a)(1 + b)

=⇒ a(1 + b)(1 + c)

(1 + a)(1 + b)(1 + c)
≤ b(1 + a)(1 + c)

(1 + a)(1 + b)(1 + c)
+

c(1 + a)(1 + b)

(1 + a)(1 + b)(1 + c)

=⇒ a

1 + a
≤ b

1 + b
+

c

1 + c
.

Applying the above with a = d(x, z), b = d(x, y), c = d(y, z), it follows that the triangle
inequality for d implies the triangle inequality for d.

4. The diameter of a metric space (X, d) is defined to be:

diam(X, d) := sup {d(x, y) : x, y ∈ X}

Compute the following diameters, justifying your answer:

(a) diam(Rn, d), where d is the usual (Euclidean) distance;

(b) diam(Rn, d), where d is the distance defined in the previous exercise, with d still
being the usual (Euclidean) distance.

Solution:

(a) diam(Rn, d) = +∞, i.e., the set {d(x, y) : x, y ∈ Rn} is not bounded from above.
Indeed, if there existed an upper bound M > 0 such that d(x, y) = ||x − y|| ≤ M for
all x, y ∈ Rn, then taking x = (0, . . . , 0) and y = (M + 1, 0, . . . , 0), we would have
||x− y|| = M + 1 > M , a contradiction.

(b) diam(Rn, d) = 1. First, note that d(x, y) = d(x,y)
1+d(x,y) < 1 for all x, y ∈ Rn, so 1 is an

upper bound for {d(x, y) : x, y ∈ Rn}. In order to show that 1 is the least upper bound
for this set, suppose there exists a < 1 such that d(x, y) ≤ a for all x, y ∈ Rn. Then,

d(x, y)

1 + d(x, y)
≤ a =⇒ d(x, y) ≤ a+ a d(x, y) =⇒ d(x, y) ≤ a

1− a
,

so M = a
1−a would be an upper bound for {d(x, y) : x, y ∈ Rn}, contradicting what we

proved above in (a). Therefore, no such a < 1 exists, and sup{d(x, y) : x, y ∈ Rn} = 1.
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5. Use the Heine–Borel Theorem to prove the following about compact sets in Rn:

(a) The union of finitely many compact sets in Rn is compact;

(b) The intersection of any collection of compact sets in Rn is compact.

Solution:

Recall that, by the Heine–Borel Theorem, a subset of Rn is compact if and only if it is
closed and bounded.

(a) Let K1, . . . ,K` ⊂ Rn be compact sets, and K =
⋃̀
i=1

Ki. Since the union of finitely

many closed sets is closed (Lecture 4, Video 6), it follows that K is closed. Moreover,
as Ki, i = 1, . . . , `, are bounded, there exist ri > 0, i = 1, . . . , `, such that Ki ⊂ Bri(0).
Setting r = max

1≤i≤`
ri, we have that K ⊂ Br(0), hence K is bounded. Thus, K is compact.

(b) Let Kα ⊂ Rn, α ∈ A, be compact sets, and K =
⋂
α∈A

Kα. Since the intersection of

arbitrarily many closed sets is closed (Lecture 4, Video 6), it follows that K is closed.
Fix any α ∈ A. Since Kα is bounded, there exists r > 0 such that Kα ⊂ Br(0). Since
K ⊂ Kα, it follows that also K is bounded. Thus, K is compact.
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