Solutions to Homework Set 2

1. Decide whether each of the following subsets of \mathbb{R} is countable or uncountable and give a rigorous proof of your claim.
(a) $\mathbb{R} \backslash \mathbb{Q}=\{x \in \mathbb{R}: x$ is irrational $\}$
(b) $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$

Side note: $\mathbb{Q}(\sqrt{2})$ is a field! (But it does not have the least upper bound property.)
Solution:
(a) The set $\mathbb{R} \backslash \mathbb{Q}$ of irrational numbers is uncountable. We proved in Lecture 3 (Video 6) that \mathbb{Q} is countable, and in Lecture 6 (Video 2) that \mathbb{R} is uncountable. If $\mathbb{R} \backslash \mathbb{Q}$ was countable, then $\mathbb{R}=\mathbb{Q} \cup(\mathbb{R} \backslash \mathbb{Q})$ would also be countable, because it would be a union of finitely many countable sets. Thus, $R \backslash \mathbb{Q}$ is uncountable.
(b) The set $\mathbb{Q}(\sqrt{2})$ is countable. Indeed, there is a bijection $\phi: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}(\sqrt{2})$, given by $\phi(a, b)=a+b \sqrt{2}$, and we established in Lecture 3 (Video 5) that the (finite) cartesian product of countable sets, such as $\mathbb{Q} \times \mathbb{Q}$, is countable.
2. Given three distinct natural numbers $a, b, c \in \mathbb{N}$, construct a bounded set $X \subset \mathbb{R}$ such that a, b, and c are the only limit points of X, and none of them belong to X.
Solution:
Let $X=\left\{a+\frac{1}{n}: n \in \mathbb{N}, n \geq 2\right\} \cup\left\{b+\frac{1}{m}: m \in \mathbb{N}, m \geq 2\right\} \cup\left\{c+\frac{1}{r}: r \in \mathbb{N}, r \geq 2\right\}$. Clearly, a is a limit point of X, since for any $\varepsilon>0$, by the Archimedean property, there exists $n \in \mathbb{N}, n \geq 2$, such that $\frac{1}{n}<\varepsilon$, and hence $a+\frac{1}{n} \in(a, a+\varepsilon)$. Similarly, b and c are limit points of X. Aside from a, b, c, there is no other $x \in \mathbb{R}$ which is a limit point of X, since the distance from any $x \in \mathbb{R} \backslash(X \cup\{a, b, c\})$ to X is a (strictly) positive number. Finally, $X \cap\{a, b, c\}=\emptyset$ by construction, since $\{a, b, c\} \subset \mathbb{N}$ and $X \cap \mathbb{N}=\emptyset$.
3. Let (X, d) be any metric space. Prove that

$$
\bar{d}(x, y):=\frac{d(x, y)}{1+d(x, y)}, \quad x, y \in X
$$

is also a distance function on X, i.e., prove that (X, \bar{d}) is also a metric space.

Solution:

We need to verify that \bar{d} satisfies the following 3 properties:
(i) $\bar{d}(x, y)>0$ if $x \neq y$ and $\bar{d}(x, y)=0$ if and only if $x=y$.

Since $d(x, y)>0$ if $x \neq y$, then also $\frac{d(x, y)}{1+d(x, y)}>0$ if $x \neq y$. Moreover, $\frac{d(x, y)}{1+d(x, y)}=0$ if and only if $d(x, y)=0$, which holds if and only if $x=y$.
(ii) $\bar{d}(x, y)=\bar{d}(y, x)$

This follows immediately from the assumption that $d(x, y)=d(y, x)$, namely:

$$
\bar{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}=\frac{d(y, x)}{1+d(y, x)}=\bar{d}(y, x) .
$$

(iii) Triangle inequality: $\bar{d}(x, z) \leq \bar{d}(x, y)+\bar{d}(y, z)$

First, observe that if $a, b, c \geq 0$, then:

$$
\begin{aligned}
a \leq b+c & \Longrightarrow a \leq b+c+2 b c+a b c \\
& \Longrightarrow a+a b+a c+a b c \leq(b+a b+b c+a b c)+(c+a c+b c+a b c) \\
& \Longrightarrow a(1+b)(1+c) \leq b(1+a)(1+c)+c(1+a)(1+b) \\
& \Longrightarrow \frac{a(1+b)(1+c)}{(1+a)(1+b)(1+c)} \leq \frac{b(1+a)(1+c)}{(1+a)(1+b)(1+c)}+\frac{c(1+a)(1+b)}{(1+a)(1+b)(1+c)} \\
& \Longrightarrow \frac{a}{1+a} \leq \frac{b}{1+b}+\frac{c}{1+c} .
\end{aligned}
$$

Applying the above with $a=d(x, z), b=d(x, y), c=d(y, z)$, it follows that the triangle inequality for d implies the triangle inequality for \bar{d}.
4. The diameter of a metric space (X, d) is defined to be:

$$
\operatorname{diam}(X, d):=\sup \{d(x, y): x, y \in X\}
$$

Compute the following diameters, justifying your answer:
(a) $\operatorname{diam}\left(\mathbb{R}^{n}, d\right)$, where d is the usual (Euclidean) distance;
(b) $\operatorname{diam}\left(\mathbb{R}^{n}, \bar{d}\right)$, where \bar{d} is the distance defined in the previous exercise, with d still being the usual (Euclidean) distance.

Solution:

(a) $\operatorname{diam}\left(\mathbb{R}^{n}, d\right)=+\infty$, i.e., the set $\left\{d(x, y): x, y \in \mathbb{R}^{n}\right\}$ is not bounded from above. Indeed, if there existed an upper bound $M>0$ such that $d(x, y)=\|x-y\| \leq M$ for all $x, y \in \mathbb{R}^{n}$, then taking $x=(0, \ldots, 0)$ and $y=(M+1,0, \ldots, 0)$, we would have $\|x-y\|=M+1>M$, a contradiction.
(b) $\operatorname{diam}\left(\mathbb{R}^{n}, \bar{d}\right)=1$. First, note that $\bar{d}(x, y)=\frac{d(x, y)}{1+d(x, y)}<1$ for all $x, y \in \mathbb{R}^{n}$, so 1 is an upper bound for $\left\{\bar{d}(x, y): x, y \in \mathbb{R}^{n}\right\}$. In order to show that 1 is the least upper bound for this set, suppose there exists $a<1$ such that $\bar{d}(x, y) \leq a$ for all $x, y \in \mathbb{R}^{n}$. Then,

$$
\frac{d(x, y)}{1+d(x, y)} \leq a \quad \Longrightarrow \quad d(x, y) \leq a+a d(x, y) \Longrightarrow d(x, y) \leq \frac{a}{1-a},
$$

so $M=\frac{a}{1-a}$ would be an upper bound for $\left\{d(x, y): x, y \in \mathbb{R}^{n}\right\}$, contradicting what we proved above in (a). Therefore, no such $a<1$ exists, and $\sup \left\{\bar{d}(x, y): x, y \in \mathbb{R}^{n}\right\}=1$.
5. Use the Heine-Borel Theorem to prove the following about compact sets in \mathbb{R}^{n} :
(a) The union of finitely many compact sets in \mathbb{R}^{n} is compact;
(b) The intersection of any collection of compact sets in \mathbb{R}^{n} is compact.

Solution:

Recall that, by the Heine-Borel Theorem, a subset of \mathbb{R}^{n} is compact if and only if it is closed and bounded.
(a) Let $K_{1}, \ldots, K_{\ell} \subset \mathbb{R}^{n}$ be compact sets, and $K=\bigcup_{i=1}^{\ell} K_{i}$. Since the union of finitely many closed sets is closed (Lecture 4, Video 6), it follows that K is closed. Moreover, as $K_{i}, i=1, \ldots, \ell$, are bounded, there exist $r_{i}>0, i=1, \ldots, \ell$, such that $K_{i} \subset B_{r_{i}}(0)$. Setting $r=\max _{1 \leq i \leq \ell} r_{i}$, we have that $K \subset B_{r}(0)$, hence K is bounded. Thus, K is compact.
(b) Let $K_{\alpha} \subset \mathbb{R}^{n}$, $\alpha \in A$, be compact sets, and $K=\bigcap_{\alpha \in A} K_{\alpha}$. Since the intersection of arbitrarily many closed sets is closed (Lecture 4, Video 6), it follows that K is closed. Fix any $\alpha \in A$. Since K_{α} is bounded, there exists $r>0$ such that $K_{\alpha} \subset B_{r}(0)$. Since $K \subset K_{\alpha}$, it follows that also K is bounded. Thus, K is compact.

