Solutions to Homework Set 3

1. Decide if each of the statements below is true or false. If it is true, give a complete proof; if it is false, give an explicit counter-example.
(a) If $\left\{x_{n}\right\}$ is a convergent sequence of real (or complex) numbers, then $\left\{\left|x_{n}\right|\right\}$ is also convergent.
(b) If $\left\{\left|x_{n}\right|\right\}$ is a convergent sequence of real (or complex) numbers, then $\left\{x_{n}\right\}$ is also convergent.
(c) If $\left\{x_{n}\right\}$ is a sequence of real (or complex) numbers that converges to 0 , and $\left\{y_{n}\right\}$ is a sequence of real numbers that diverges to $+\infty$, then the sequence $\left\{x_{n} y_{n}\right\}$ converges to 1 .
(d) If $\left\{x_{n}\right\}$ is a sequence of real numbers that diverges to $+\infty$ and $a \in \mathbb{R}$, then

$$
\lim _{n \rightarrow+\infty} \sqrt{\log \left(x_{n}+a\right)}-\sqrt{\log x_{n}}=0
$$

Solution:

(a) TRUE: First, for all $a, b \in \mathbb{C}$, using the triangle inequality, we have that:

$$
|a|=|a+(b-b)|=|(a-b)+b| \leq|a-b|+|b| \Longrightarrow|a|-|b| \leq|a-b|
$$

and, similarly,

$$
|b|=|b+(a-a)|=|-(a-b)+a| \leq|a-b|+|a| \Longrightarrow|b|-|a| \leq|a-b|
$$

so, altogether, we have $\pm(|a|-|b|) \leq|a-b|$, that is, $||a|-|b|| \leq|a-b|$ for all $a, b \in \mathbb{C}$.
Now, suppose $\left\{x_{n}\right\}$ converges to x, i.e., for all $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\varepsilon$. Applying the inequality $||a|-|b|| \leq|a-b|$ proved above, we have:

$$
\left|\left|x_{n}\right|-|x|\right| \leq\left|x_{n}-x\right|<\varepsilon,
$$

for all $n \geq N$, that is, $\left\{\left|x_{n}\right|\right\}$ converges to $|x|$.
(b) FALSE: Take $x_{n}=(-1)^{n}$, so that $\left|x_{n}\right|=1$. Then $\left\{\left|x_{n}\right|\right\}$ converges to 1 , but x_{n} does not converge.
(c) FALSE: Take $x_{n}=\frac{2}{n}$ and $y_{n}=n$. Then $\left\{x_{n}\right\}$ converges to $0,\left\{y_{n}\right\}$ diverges to $+\infty$, but $\left\{x_{n} y_{n}\right\}$ does not converge to 1 .
(d) TRUE: Using the fact that $(\sqrt{A}-\sqrt{B})(\sqrt{A}+\sqrt{B})=A-B$, we have:

$$
\sqrt{\log \left(x_{n}+a\right)}-\sqrt{\log x_{n}}=\frac{\log \left(x_{n}+a\right)-\log x_{n}}{\sqrt{\log \left(x_{n}+a\right)}+\sqrt{\log x_{n}}}=\frac{\log \left(\frac{x_{n}+a}{x_{n}}\right)}{\sqrt{\log \left(x_{n}+a\right)}+\sqrt{\log x_{n}}}
$$

Since $\left\{x_{n}\right\}$ diverges to $+\infty$, we have that $\left\{\frac{x_{n}+a}{x_{n}}\right\}$ converges to 1 , so $\left\{\log \left(\frac{x_{n}+a}{x_{n}}\right)\right\}$ converges to 0 . Moreover, the denominators $\left\{\sqrt{\log \left(x_{n}+a\right)}+\sqrt{\log x_{n}}\right\}$ diverge to $+\infty$. Thus, the sequence $\left\{\sqrt{\log \left(x_{n}+a\right)}-\sqrt{\log x_{n}}\right\}$ converge to 0 .
2. Suppose $\left\{x_{n}\right\}$ is a Cauchy sequence in a metric space (X, d), with a subsequence $\left\{x_{n_{k}}\right\}$ that converges to $x \in X$, i.e., x is a subsequential limit of $\left\{x_{n}\right\}$. Prove that $\left\{x_{n}\right\}$ converges to x.

Solution:

Since the subsequence $\left\{x_{n_{k}}\right\}$ converges to $x \in X$, we know tht for all $\varepsilon>0$, there exists $N_{1} \in \mathbb{N}$ such that if $n_{k} \geq N_{1}$ then $d\left(x_{n_{k}}, x\right)<\frac{\varepsilon}{2}$. Moreover, since $\left\{x_{n}\right\}$ is Cauchy, for all $\varepsilon>0$, there exists $N_{2} \in \mathbb{N}$ such that if $n, m \geq N_{2}$, then $d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{2}$. Choose $\ell \in \mathbb{N}$ such that $n_{\ell}>\max \left\{N_{1}, N_{2}\right\}$. Then, if $n \geq \max \left\{N_{1}, N_{2}\right\}$, we have that

$$
d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{n_{\ell}}\right)+d\left(x_{n_{\ell}}, x\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

that is, x_{n} converges to x.
3. Given $a>0$, define a sequence $\left\{x_{n}\right\}$ of real numbers inductively by setting $x_{1}=\frac{1}{a}$, and $x_{n+1}=\frac{1}{a+x_{n}}$, i.e.,

$$
x_{n}=\frac{1}{a+\frac{1}{a+\frac{1}{a+\ldots}}} .
$$

(a) Is $\left\{x_{n}\right\}$ monotonic?
(b) Prove that $\left\{x_{n}\right\}$ converges to the unique real number L such that $L=\frac{1}{a+L}$, i.e., the positive root of the equation $x^{2}+a x-1=0$.

Side note: Setting $a=1$ in the above, the limit of the corresponding sequence $\left\{x_{n}\right\}$ is $L=\frac{1}{\varphi}$, where $\varphi=\frac{1+\sqrt{5}}{2} \cong 1.618 \ldots$ is the so-called golden ratio.
Solution:
(a) No. The sequence $\left\{x_{n}\right\}$ is not monotonic. In fact, for all $n \in \mathbb{N}$, we have that:

$$
x_{2}<x_{4}<\cdots<x_{2 n}<\cdots<L<\cdots<x_{2 n-1}<\cdots<x_{3}<x_{1}
$$

i.e., the subsequence $\left\{x_{2 n}\right\}$ is monotonically increasing, the subsequence $\left\{x_{2 n-1}\right\}$ is monotonically decreasing, and $x_{2 n}<L<x_{2 n-1}$ for all $n \in \mathbb{N}$.
Proof. Let us first prove that the subsequence $\left\{x_{2 n-1}\right\}$ is monotonically decreasing, by induction on n. The base case $n=1$, i.e., $x_{3}<x_{1}$ follows from:

$$
x_{3}=\frac{1}{a+\frac{1}{a+\frac{1}{a}}}<\frac{1}{a+0}=x_{1} .
$$

Now, assume by induction that $x_{2 n-1}<x_{2 n-3}$. Then

$$
\begin{aligned}
x_{2 n+1}=\frac{1}{a+x_{2 n}}=\frac{1}{a+\frac{1}{a+x_{2 n-1}}} & \Longrightarrow \quad \frac{1}{x_{2 n+1}}=a+\frac{1}{a+x_{2 n-1}}>a+\frac{1}{a+x_{2 n-3}} \\
& \Longrightarrow \quad x_{2 n+1}<\frac{1}{a+\frac{1}{a+x_{2 n-3}}}=x_{2 n-1},
\end{aligned}
$$

that is, $x_{2 n+1}<x_{2 n-1}$, which is the next case. This establishes the claim for all $n \in \mathbb{N}$. Similarly, we prove by induction that the subsequence $\left\{x_{2 n}\right\}$ is monotonically increasing. The base case $n=1$, i.e., $x_{2}<x_{4}$ follows from:

$$
\frac{1}{x_{2}}=a+\frac{1}{a}=a+\frac{1}{a+0}>a+\frac{1}{a+\frac{1}{a+\frac{1}{a}}}=\frac{1}{x_{4}} .
$$

Now, assume by induction that $x_{2 n-2}<x_{2 n}$. Then

$$
\begin{aligned}
x_{2 n+2}=\frac{1}{a+x_{2 n+1}}=\frac{1}{a+\frac{1}{a+x_{2 n}}} & \Longrightarrow \quad \frac{1}{x_{2 n+2}}=a+\frac{1}{a+x_{2 n}}<a+\frac{1}{a+x_{2 n-2}} \\
& \Longrightarrow \quad x_{2 n+2}>\frac{1}{a+\frac{1}{a+x_{2 n-2}}}=x_{2 n}
\end{aligned}
$$

that is, $x_{2 n}<x_{2 n+2}$, which is the next case. This establishes the claim for all $n \in \mathbb{N}$.
Finally, let us show that $x_{2 n}<L<x_{2 n-1}$ for all $n \in \mathbb{N}$, also by induction. The base case follows from:

$$
L=\frac{1}{a+L}<\frac{1}{a}=x_{1}
$$

and, using the above inequality,

$$
x_{2}=\frac{1}{a+x_{1}}<\frac{1}{a+L}=L .
$$

Now, assume by induction that $x_{2 n}<L<x_{2 n-1}$. Then

$$
\frac{1}{x_{2 n+1}}=a+\frac{1}{a+x_{2 n-1}}<a+\frac{1}{a+L}=a+L \quad \Longrightarrow \quad L=\frac{1}{a+L}<x_{2 n+1}
$$

and, similarly,

$$
\frac{1}{x_{2 n+2}}=a+\frac{1}{a+x_{2 n}}>a+\frac{1}{a+L}=a+L \quad \Longrightarrow \quad x_{2 n+2}<\frac{1}{a+L}=L
$$

that is, $x_{2 n+2}<L<x_{2 n+1}$, which is the next case. This concludes the proof.
(b) By what we showed in (a), since $\left\{x_{2 n}\right\}$ is monotonically increasing and bounded from above by L, it follows that $\left\{x_{2 n}\right\}$ is convergent, say $x_{2 n} \rightarrow \underline{L}$, with $\underline{L} \leq L$. Similarly, since $\left\{x_{2 n-1}\right\}$ is monotonically decreasing and bounded from below by L, it is convergent, say $x_{2 n-1} \rightarrow \bar{L}$, with $\bar{L} \geq L$. We claim that $\underline{L}=L=\bar{L}$.

Letting $n \rightarrow+\infty$ in the equations

$$
x_{2 n+1}=\frac{1}{a+\frac{1}{a+x_{2 n-1}}}, \quad \text { and } \quad x_{2 n+2}=\frac{1}{a+\frac{1}{a+x_{2 n}}}
$$

we find that both \underline{L} and \bar{L} are solutions of the equation

$$
z=\frac{1}{a+\frac{1}{a+\frac{1}{z}}} .
$$

The above equation is equivalent to $z^{2}+a z-1=0$, which has a unique positive real solution $z=L$. Therefore, $\underline{L}=L=\bar{L}$, and hence $\left\{x_{n}\right\}$ also converges to L because $\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{x_{2 n}: n \in \mathbb{N}\right\} \cup\left\{x_{2 n-1}: n \in \mathbb{N}\right\}$ and L is its unique limit point.

