Solutions to Homework Set 3

- 1. Decide if each of the statements below is **true** or **false**. If it is true, give a complete **proof**; if it is false, give an explicit **counter-example**.
 - (a) If $\{x_n\}$ is a convergent sequence of real (or complex) numbers, then $\{|x_n|\}$ is also convergent.
 - (b) If $\{|x_n|\}$ is a convergent sequence of real (or complex) numbers, then $\{x_n\}$ is also convergent.
 - (c) If $\{x_n\}$ is a sequence of real (or complex) numbers that converges to 0, and $\{y_n\}$ is a sequence of real numbers that diverges to $+\infty$, then the sequence $\{x_n y_n\}$ converges to 1.
 - (d) If $\{x_n\}$ is a sequence of real numbers that diverges to $+\infty$ and $a \in \mathbb{R}$, then

$$\lim_{n \to +\infty} \sqrt{\log(x_n + a)} - \sqrt{\log x_n} = 0$$

Solution:

(a) **TRUE:** First, for all $a, b \in \mathbb{C}$, using the triangle inequality, we have that:

$$|a| = |a + (b - b)| = |(a - b) + b| \le |a - b| + |b| \implies |a| - |b| \le |a - b|$$

and, similarly,

$$|b| = |b + (a - a)| = |-(a - b) + a| \le |a - b| + |a| \implies |b| - |a| \le |a - b|$$

so, altogether, we have $\pm (|a| - |b|) \leq |a - b|$, that is, $||a| - |b|| \leq |a - b|$ for all $a, b \in \mathbb{C}$. Now, suppose $\{x_n\}$ converges to x, i.e., for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon$. Applying the inequality $||a| - |b|| \leq |a - b|$ proved above, we have:

$$|x_n| - |x|| \le |x_n - x| < \varepsilon$$

for all $n \ge N$, that is, $\{|x_n|\}$ converges to |x|.

(b) **FALSE:** Take
$$x_n = (-1)^n$$
, so that $|x_n| = 1$. Then $\{|x_n|\}$ converges to 1, but x_n does not converge.

(c) **FALSE:** Take $x_n = \frac{2}{n}$ and $y_n = n$. Then $\{x_n\}$ converges to 0, $\{y_n\}$ diverges to $+\infty$, but $\{x_ny_n\}$ does not converge to 1.

(d) **TRUE:** Using the fact that $(\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B$, we have:

$$\sqrt{\log(x_n+a)} - \sqrt{\log x_n} = \frac{\log(x_n+a) - \log x_n}{\sqrt{\log(x_n+a)} + \sqrt{\log x_n}} = \frac{\log\left(\frac{x_n+a}{x_n}\right)}{\sqrt{\log(x_n+a)} + \sqrt{\log x_n}}$$

Since $\{x_n\}$ diverges to $+\infty$, we have that $\left\{\frac{x_n+a}{x_n}\right\}$ converges to 1, so $\left\{\log\left(\frac{x_n+a}{x_n}\right)\right\}$
converges to 0. Moreover, the denominators $\left\{\sqrt{\log(x_n+a)} + \sqrt{\log x_n}\right\}$ diverge to $+\infty$. Thus, the sequence $\left\{\sqrt{\log(x_n+a)} - \sqrt{\log x_n}\right\}$ converge to 0. \Box

2. Suppose $\{x_n\}$ is a Cauchy sequence in a metric space (X, d), with a subsequence $\{x_{n_k}\}$ that converges to $x \in X$, i.e., x is a subsequential limit of $\{x_n\}$. Prove that $\{x_n\}$ converges to x.

Solution:

Since the subsequence $\{x_{n_k}\}$ converges to $x \in X$, we know that for all $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that if $n_k \ge N_1$ then $d(x_{n_k}, x) < \frac{\varepsilon}{2}$. Moreover, since $\{x_n\}$ is Cauchy, for all $\varepsilon > 0$, there exists $N_2 \in \mathbb{N}$ such that if $n, m \ge N_2$, then $d(x_n, x_m) < \frac{\varepsilon}{2}$. Choose $\ell \in \mathbb{N}$ such that $n_\ell > \max\{N_1, N_2\}$. Then, if $n \ge \max\{N_1, N_2\}$, we have that

$$d(x_n, x) \le d(x_n, x_{n_\ell}) + d(x_{n_\ell}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

that is, x_n converges to x.

3. Given a > 0, define a sequence $\{x_n\}$ of real numbers inductively by setting $x_1 = \frac{1}{a}$, and $x_{n+1} = \frac{1}{a+x_n}$, i.e.,

$$x_n = \frac{1}{a + \frac{1}{a + \frac{1}{a + \dots}}}$$

- (a) Is $\{x_n\}$ monotonic?
- (b) Prove that $\{x_n\}$ converges to the unique real number L such that $L = \frac{1}{a+L}$, i.e., the positive root of the equation $x^2 + ax 1 = 0$.

Side note: Setting a = 1 in the above, the limit of the corresponding sequence $\{x_n\}$ is $L = \frac{1}{\varphi}$, where $\varphi = \frac{1+\sqrt{5}}{2} \cong 1.618...$ is the so-called *golden ratio*. Solution:

(a) No. The sequence $\{x_n\}$ is not monotonic. In fact, for all $n \in \mathbb{N}$, we have that:

$$x_2 < x_4 < \dots < x_{2n} < \dots < L < \dots < x_{2n-1} < \dots < x_3 < x_1,$$

i.e., the subsequence $\{x_{2n}\}$ is monotonically increasing, the subsequence $\{x_{2n-1}\}$ is monotonically decreasing, and $x_{2n} < L < x_{2n-1}$ for all $n \in \mathbb{N}$.

Proof. Let us first prove that the subsequence $\{x_{2n-1}\}$ is monotonically decreasing, by induction on n. The base case n = 1, i.e., $x_3 < x_1$ follows from:

$$x_3 = \frac{1}{a + \frac{1}{a + \frac{1}{a}}} < \frac{1}{a + 0} = x_1.$$

Now, assume by induction that $x_{2n-1} < x_{2n-3}$. Then

$$\begin{aligned} x_{2n+1} &= \frac{1}{a+x_{2n}} = \frac{1}{a+\frac{1}{a+x_{2n-1}}} &\implies \frac{1}{x_{2n+1}} = a + \frac{1}{a+x_{2n-1}} > a + \frac{1}{a+x_{2n-3}} \\ &\implies x_{2n+1} < \frac{1}{a+\frac{1}{a+x_{2n-3}}} = x_{2n-1}, \end{aligned}$$

that is, $x_{2n+1} < x_{2n-1}$, which is the next case. This establishes the claim for all $n \in \mathbb{N}$. Similarly, we prove by induction that the subsequence $\{x_{2n}\}$ is monotonically increasing. The base case n = 1, i.e., $x_2 < x_4$ follows from:

$$\frac{1}{x_2} = a + \frac{1}{a} = a + \frac{1}{a+0} > a + \frac{1}{a + \frac{1}{a+\frac{1}{a}}} = \frac{1}{x_4}$$

Now, assume by induction that $x_{2n-2} < x_{2n}$. Then

$$\begin{aligned} x_{2n+2} &= \frac{1}{a+x_{2n+1}} = \frac{1}{a+\frac{1}{a+x_{2n}}} \implies \frac{1}{x_{2n+2}} = a + \frac{1}{a+x_{2n}} < a + \frac{1}{a+x_{2n-2}} \\ \implies x_{2n+2} > \frac{1}{a+\frac{1}{a+x_{2n-2}}} = x_{2n}, \end{aligned}$$

that is, $x_{2n} < x_{2n+2}$, which is the next case. This establishes the claim for all $n \in \mathbb{N}$. Finally, let us show that $x_{2n} < L < x_{2n-1}$ for all $n \in \mathbb{N}$, also by induction. The base case follows from:

$$L = \frac{1}{a+L} < \frac{1}{a} = x_1$$

and, using the above inequality,

$$x_2 = \frac{1}{a+x_1} < \frac{1}{a+L} = L.$$

Now, assume by induction that $x_{2n} < L < x_{2n-1}$. Then

$$\frac{1}{x_{2n+1}} = a + \frac{1}{a + x_{2n-1}} < a + \frac{1}{a + L} = a + L \quad \Longrightarrow \quad L = \frac{1}{a + L} < x_{2n+1}$$

and, similarly,

$$\frac{1}{x_{2n+2}} = a + \frac{1}{a+x_{2n}} > a + \frac{1}{a+L} = a + L \implies x_{2n+2} < \frac{1}{a+L} = L,$$

that is, $x_{2n+2} < L < x_{2n+1}$, which is the next case. This concludes the proof. (b) By what we showed in (a), since $\{x_{2n}\}$ is monotonically increasing and bounded from above by L, it follows that $\{x_{2n}\}$ is convergent, say $x_{2n} \to \underline{L}$, with $\underline{L} \leq L$. Similarly, since $\{x_{2n-1}\}$ is monotonically decreasing and bounded from below by L, it is convergent, say $x_{2n-1} \to \overline{L}$, with $\overline{L} \geq L$. We claim that $\underline{L} = L = \overline{L}$. Letting $n \to +\infty$ in the equations

$$x_{2n+1} = \frac{1}{a + \frac{1}{a + x_{2n-1}}}, \quad and \quad x_{2n+2} = \frac{1}{a + \frac{1}{a + x_{2n}}},$$

we find that both \underline{L} and \overline{L} are solutions of the equation

$$z = \frac{1}{a + \frac{1}{a + \frac{1}{z}}}.$$

The above equation is equivalent to $z^2 + az - 1 = 0$, which has a unique positive real solution z = L. Therefore, $\underline{L} = L = \overline{L}$, and hence $\{x_n\}$ also converges to L because $\{x_n : n \in \mathbb{N}\} = \{x_{2n} : n \in \mathbb{N}\} \cup \{x_{2n-1} : n \in \mathbb{N}\}$ and L is its unique limit point.