
MAT320/640, Fall 2020 Renato Ghini Bettiol

Solutions to Homework Set 3

1. Decide if each of the statements below is true or false. If it is true, give a complete
proof; if it is false, give an explicit counter-example.

(a) If {xn} is a convergent sequence of real (or complex) numbers, then {|xn|} is also
convergent.

(b) If {|xn|} is a convergent sequence of real (or complex) numbers, then {xn} is also
convergent.

(c) If {xn} is a sequence of real (or complex) numbers that converges to 0, and {yn}
is a sequence of real numbers that diverges to +∞, then the sequence {xn yn}
converges to 1.

(d) If {xn} is a sequence of real numbers that diverges to +∞ and a ∈ R, then

lim
n→+∞

√
log (xn + a)−

√
log xn = 0

Solution:

(a) TRUE: First, for all a, b ∈ C, using the triangle inequality, we have that:

|a| = |a + (b− b)| = |(a− b) + b| ≤ |a− b|+ |b| =⇒ |a| − |b| ≤ |a− b|

and, similarly,

|b| = |b + (a− a)| = | − (a− b) + a| ≤ |a− b|+ |a| =⇒ |b| − |a| ≤ |a− b|

so, altogether, we have ±(|a| − |b|) ≤ |a− b|, that is,
∣∣|a| − |b|∣∣ ≤ |a− b| for all a, b ∈ C.

Now, suppose {xn} converges to x, i.e., for all ε > 0 there exists N ∈ N such that
|xn − x| < ε. Applying the inequality

∣∣|a| − |b|∣∣ ≤ |a− b| proved above, we have:∣∣|xn| − |x|∣∣ ≤ |xn − x| < ε,

for all n ≥ N , that is, {|xn|} converges to |x|.
(b) FALSE: Take xn = (−1)n, so that |xn| = 1. Then {|xn|} converges to 1, but xn
does not converge.

(c) FALSE: Take xn = 2
n and yn = n. Then {xn} converges to 0, {yn} diverges to

+∞, but {xnyn} does not converge to 1.

(d) TRUE: Using the fact that (
√
A−
√
B)(
√
A +
√
B) = A−B, we have:

√
log (xn + a)−

√
log xn =

log (xn + a)− log xn√
log (xn + a) +

√
log xn

=

log

(
xn + a

xn

)
√

log (xn + a) +
√

log xn

Since {xn} diverges to +∞, we have that

{
xn + a

xn

}
converges to 1, so

{
log

(
xn + a

xn

)}
converges to 0. Moreover, the denominators

{√
log (xn + a) +

√
log xn

}
diverge to

+∞. Thus, the sequence
{√

log (xn + a)−
√

log xn

}
converge to 0.



2. Suppose {xn} is a Cauchy sequence in a metric space (X, d), with a subsequence {xnk
}

that converges to x ∈ X, i.e., x is a subsequential limit of {xn}. Prove that {xn}
converges to x.

Solution:

Since the subsequence {xnk
} converges to x ∈ X, we know tht for all ε > 0, there exists

N1 ∈ N such that if nk ≥ N1 then d(xnk
, x) < ε

2 . Moreover, since {xn} is Cauchy, for
all ε > 0, there exists N2 ∈ N such that if n,m ≥ N2, then d(xn, xm) < ε

2 . Choose
` ∈ N such that n` > max{N1, N2}. Then, if n ≥ max{N1, N2}, we have that

d(xn, x) ≤ d(xn, xn`
) + d(xn`

, x) <
ε

2
+

ε

2
= ε,

that is, xn converges to x.

3. Given a > 0, define a sequence {xn} of real numbers inductively by setting x1 =
1

a
,

and xn+1 =
1

a + xn
, i.e.,

xn =
1

a +
1

a +
1

a + . . .

.

(a) Is {xn} monotonic?

(b) Prove that {xn} converges to the unique real number L such that L =
1

a + L
, i.e.,

the positive root of the equation x2 + ax− 1 = 0.

Side note: Setting a = 1 in the above, the limit of the corresponding sequence {xn} is

L = 1
ϕ , where ϕ = 1+

√
5

2
∼= 1.618 . . . is the so-called golden ratio.

Solution:

(a) No. The sequence {xn} is not monotonic. In fact, for all n ∈ N, we have that:

x2 < x4 < · · · < x2n < · · · < L < · · · < x2n−1 < · · · < x3 < x1,

i.e., the subsequence {x2n} is monotonically increasing, the subsequence {x2n−1} is
monotonically decreasing, and x2n < L < x2n−1 for all n ∈ N.

Proof. Let us first prove that the subsequence {x2n−1} is monotonically decreasing, by
induction on n. The base case n = 1, i.e., x3 < x1 follows from:

x3 =
1

a + 1
a+ 1

a

<
1

a + 0
= x1.
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Now, assume by induction that x2n−1 < x2n−3. Then

x2n+1 =
1

a + x2n
=

1

a + 1
a+x2n−1

=⇒ 1

x2n+1
= a +

1

a + x2n−1
> a +

1

a + x2n−3

=⇒ x2n+1 <
1

a + 1
a+x2n−3

= x2n−1,

that is, x2n+1 < x2n−1, which is the next case. This establishes the claim for all n ∈ N.

Similarly, we prove by induction that the subsequence {x2n} is monotonically increasing.
The base case n = 1, i.e., x2 < x4 follows from:

1

x2
= a +

1

a
= a +

1

a + 0
> a +

1

a + 1
a+ 1

a

=
1

x4
.

Now, assume by induction that x2n−2 < x2n. Then

x2n+2 =
1

a + x2n+1
=

1

a + 1
a+x2n

=⇒ 1

x2n+2
= a +

1

a + x2n
< a +

1

a + x2n−2

=⇒ x2n+2 >
1

a + 1
a+x2n−2

= x2n,

that is, x2n < x2n+2, which is the next case. This establishes the claim for all n ∈ N.

Finally, let us show that x2n < L < x2n−1 for all n ∈ N, also by induction. The base
case follows from:

L =
1

a + L
<

1

a
= x1

and, using the above inequality,

x2 =
1

a + x1
<

1

a + L
= L.

Now, assume by induction that x2n < L < x2n−1. Then

1

x2n+1
= a +

1

a + x2n−1
< a +

1

a + L
= a + L =⇒ L =

1

a + L
< x2n+1

and, similarly,

1

x2n+2
= a +

1

a + x2n
> a +

1

a + L
= a + L =⇒ x2n+2 <

1

a + L
= L,

that is, x2n+2 < L < x2n+1, which is the next case. This concludes the proof.

(b) By what we showed in (a), since {x2n} is monotonically increasing and bounded
from above by L, it follows that {x2n} is convergent, say x2n → L, with L ≤ L.
Similarly, since {x2n−1} is monotonically decreasing and bounded from below by L, it
is convergent, say x2n−1 → L, with L ≥ L. We claim that L = L = L.
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Letting n→ +∞ in the equations

x2n+1 =
1

a + 1
a+x2n−1

, and x2n+2 =
1

a + 1
a+x2n

,

we find that both L and L are solutions of the equation

z =
1

a + 1
a+ 1

z

.

The above equation is equivalent to z2 + az − 1 = 0, which has a unique positive real
solution z = L. Therefore, L = L = L, and hence {xn} also converges to L because
{xn : n ∈ N} = {x2n : n ∈ N} ∪ {x2n−1 : n ∈ N} and L is its unique limit point.
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