Solutions to Homework Set 4

1. Decide if each of the statements below is true or false. If it is true, give a complete proof; if it is false, give an explicit counter-example.
(a) If $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.
(c) If $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges.
(d) If $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges absolutely for all $x \in[-1,1]$.

Solution:

(a) FALSE: Take $a_{n}=\frac{1}{n^{2}}$, so that $\sqrt{a_{n}}=\frac{1}{n}$, and recall that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}<+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n}=+\infty
$$

since these are p-series, but the first has $p>1$ while the second has $p \leq 1$.
(b) TRUE: Recall that

$$
\left(a_{1}+\cdots+a_{n}\right)^{2}=a_{1}^{2}+\cdots+a_{n}^{2}+2\left(a_{1} a_{2}+\cdots+a_{n-1} a_{n}\right)
$$

therefore, since $a_{j} \geq 0$ for all $j \in \mathbb{N}$, the partial sums satisfy

$$
0 \leq \sum_{k=1}^{n} a_{k}^{2} \leq\left(\sum_{k=1}^{n} a_{k}\right)^{2}
$$

As $n \nearrow+\infty$, the right-hand side converges to S^{2}, where $S=\sum_{n=1}^{\infty} a_{n}<+\infty$. Therefore the partial sums in the left-hand side are bounded. Since they form a monotonically increasing (and bounded) sequence, they converge; i.e., $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.
(c) TRUE: Recall that for all $A, B \in \mathbb{R}$,

$$
0 \leq(A-B)^{2}=A^{2}-2 A B+B^{2} \Longrightarrow A B \leq \frac{1}{2}\left(A^{2}+B^{2}\right)
$$

Using the above with $A=\sqrt{a_{k}}$ and $B=1 / k$, we have the following inequalities:

$$
0 \leq \sum_{k=1}^{n} \frac{\sqrt{a_{k}}}{k} \leq \sum_{k=1}^{n} \frac{1}{2}\left(a_{k}+\frac{1}{k^{2}}\right)=\frac{1}{2} \sum_{k=1}^{n} a_{k}+\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{2}} .
$$

Since $\sum_{n=1}^{\infty} a_{n}$ converges, and so does the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, it follows that the right-hand side in the above converges to a finite quantity. Thus, the partial sums $\sum_{k=1}^{n} \frac{\sqrt{a_{k}}}{k}$ form a monotonic increasing sequence which is bounded from above, and is hence convergent.
(d) TRUE: Since $a_{j} \geq 0$ for all $j \in \mathbb{N}$, the partial sums satisfy, for any $x \in[-1,1]$:

$$
\sum_{k=1}^{n}\left|a_{k} x^{k}\right|=\sum_{k=1}^{n} a_{k}|x|^{k} \leq \sum_{k=1}^{n} a_{k} .
$$

Since the right-hand side are partial sums of the convergent series $\sum_{n=1}^{\infty} a_{n}$, it follows that the partial sums in the left-hand side also converge for any $x \in[-1,1]$, i.e., the power series $\sum_{n=1}^{\infty} a_{n} x^{n}$ converges absolutely for all $x \in[-1,1]$.
2. Use either the Root or Ratio test to find the radius of convergence of the following power series:
(a) $\sum_{n=1}^{\infty} \frac{5^{n}}{n!} z^{n}$
(b) $\sum_{n=1}^{\infty} \frac{7}{4^{n}} z^{n}$
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{\sqrt{n}} z^{n}$

Solution:

(a) Applying the Ratio test with $a_{n}=\frac{5^{n}}{n!}$, we have:

$$
\limsup _{n \rightarrow+\infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\limsup _{n \rightarrow+\infty}\left|\frac{5^{(n+1)}}{(n+1)!} \frac{n!}{5^{n}}\right|=\lim _{n \rightarrow+\infty} \frac{5}{n+1}=0 .
$$

Recall that the radius of convergence $0 \leq R \leq+\infty$ of the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ satisfies

$$
\frac{1}{R}=\limsup _{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|} \leq \limsup _{n \rightarrow+\infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

and, since the right-hand side vanishes, it follows that the radius of convergence for the above power series is $R=+\infty$.
Note: This is the power series of the (analytic) function $f(z)=e^{5 z}$.
(b) Directly applying the Root test with $a_{n}=\frac{7}{4^{n}}$, we have that the radius of convergence $0 \leq R \leq+\infty$ of this power series satisfies:

$$
\frac{1}{R}=\limsup _{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}=\limsup _{n \rightarrow+\infty} \sqrt[n]{\left|\frac{7}{4^{n}}\right|}=\lim _{n \rightarrow+\infty} \frac{\sqrt[n]{7}}{4}=\frac{1}{4}
$$

hence $R=4$.
(c) Directly applying the Root test with $a_{n}=\frac{2^{n}}{\sqrt{n}}$, we have that the radius of convergence $0 \leq R \leq+\infty$ of this power series satisfies:

$$
\frac{1}{R}=\limsup _{n \rightarrow+\infty} \sqrt[n]{\left|a_{n}\right|}=\limsup _{n \rightarrow+\infty} \sqrt[n]{\left|\frac{2^{n}}{\sqrt{n}}\right|}=\lim _{n \rightarrow+\infty} \frac{2}{\sqrt[2 n]{n}}=2
$$

hence $R=\frac{1}{2}$.

