Solutions to Homework Set 4

1. Decide if each of the statements below is **true** or **false**. If it is true, give a complete **proof**; if it is false, give an explicit **counter-example**.

Solution:

(a) **FALSE:** Take
$$a_n = \frac{1}{n^2}$$
, so that $\sqrt{a_n} = \frac{1}{n}$, and recall that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty \quad and \quad \sum_{n=1}^{\infty} \frac{1}{n} = +\infty$$

since these are p-series, but the first has p > 1 while the second has p ≤ 1.
(b) TRUE: Recall that

$$(a_1 + \dots + a_n)^2 = a_1^2 + \dots + a_n^2 + 2(a_1a_2 + \dots + a_{n-1}a_n),$$

therefore, since $a_j \ge 0$ for all $j \in \mathbb{N}$, the partial sums satisfy

$$0 \le \sum_{k=1}^n a_k^2 \le \left(\sum_{k=1}^n a_k\right)^2.$$

As $n \nearrow +\infty$, the right-hand side converges to S^2 , where $S = \sum_{n=1}^{\infty} a_n < +\infty$. Therefore the partial sums in the left-hand side are bounded. Since they form a monotonically increasing (and bounded) sequence, they converge; i.e., $\sum_{n=1}^{\infty} a_n^2$ converges. \Box

(c) **TRUE:** Recall that for all $A, B \in \mathbb{R}$,

$$0 \le (A - B)^2 = A^2 - 2AB + B^2 \Longrightarrow AB \le \frac{1}{2}(A^2 + B^2).$$

Using the above with $A = \sqrt{a_k}$ and B = 1/k, we have the following inequalities:

$$0 \le \sum_{k=1}^{n} \frac{\sqrt{a_k}}{k} \le \sum_{k=1}^{n} \frac{1}{2} \left(a_k + \frac{1}{k^2} \right) = \frac{1}{2} \sum_{k=1}^{n} a_k + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2}$$

Since $\sum_{n=1}^{\infty} a_n$ converges, and so does the p-series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, it follows that the right-hand

side in the above converges to a finite quantity. Thus, the partial sums $\sum_{k=1}^{n} \frac{\sqrt{a_k}}{k}$ form a monotonic increasing sequence which is bounded from above, and is hence convergent.

(d) **TRUE:** Since $a_j \ge 0$ for all $j \in \mathbb{N}$, the partial sums satisfy, for any $x \in [-1, 1]$:

$$\sum_{k=1}^{n} |a_k x^k| = \sum_{k=1}^{n} a_k |x|^k \le \sum_{k=1}^{n} a_k$$

Since the right-hand side are partial sums of the convergent series $\sum_{n=1}^{\infty} a_n$, it follows that the partial sums in the left-hand side also converge for any $x \in [-1, 1]$, i.e., the power series $\sum_{n=1}^{\infty} a_n x^n$ converges absolutely for all $x \in [-1, 1]$.

2. Use either the Root or Ratio test to find the radius of convergence of the following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{5^n}{n!} z^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{7}{4^n} z^n$$

(c)
$$\sum_{n=1}^{\infty} \frac{2^n}{\sqrt{n}} z^n$$

Solution:

(a) Applying the Ratio test with $a_n = \frac{5^n}{n!}$, we have:

$$\limsup_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \limsup_{n \to +\infty} \left| \frac{5^{(n+1)}}{(n+1)!} \frac{n!}{5^n} \right| = \lim_{n \to +\infty} \frac{5}{n+1} = 0.$$

Recall that the radius of convergence $0 \le R \le +\infty$ of the power series $\sum_{n=1}^{\infty} a_n z^n$ satisfies

$$\frac{1}{R} = \limsup_{n \to +\infty} \sqrt[n]{|a_n|} \le \limsup_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right|,$$

and, since the right-hand side vanishes, it follows that the radius of convergence for the above power series is $R = +\infty$.

Note: This is the power series of the (analytic) function $f(z) = e^{5z}$.

(b) Directly applying the Root test with $a_n = \frac{7}{4^n}$, we have that the radius of convergence $0 \le R \le +\infty$ of this power series satisfies:

$$\frac{1}{R} = \limsup_{n \to +\infty} \sqrt[n]{|a_n|} = \limsup_{n \to +\infty} \sqrt[n]{\left|\frac{7}{4^n}\right|} = \lim_{n \to +\infty} \frac{\sqrt[n]{7}}{4} = \frac{1}{4},$$

hence R = 4.

(c) Directly applying the Root test with $a_n = \frac{2^n}{\sqrt{n}}$, we have that the radius of convergence $0 \le R \le +\infty$ of this power series satisfies:

$$\frac{1}{R} = \limsup_{n \to +\infty} \sqrt[n]{|a_n|} = \limsup_{n \to +\infty} \sqrt[n]{\left|\frac{2^n}{\sqrt{n}}\right|} = \lim_{n \to +\infty} \frac{2}{\sqrt[n]{n}} = 2,$$

hence $R = \frac{1}{2}$.