Homework Set 5

DUE: NOV 4, 2020 (VIA BLACKBOARD, BY 11.59PM)

To be handed in:

Please remember that all problems will be graded!

- Decide if each of the statements below is true or false. If it is true, give a complete proof; if it is false, give an explicit counter-example.
 (Recall that a function f: X → Y is called *surjective*, or *onto*, if every point of Y belongs to its image, that is, if f(X) = Y.)
 - (a) There exists a continuous function $f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$.
 - (b) There exists a continuous surjective function $f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$.
 - (c) There exists a continuous function $f: [0,1] \to \mathbb{R}$.
 - (d) There exists a continuous surjective function $f: [0,1] \to \mathbb{R}$.
 - (e) The function $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$, is uniformly continuous.
 - (f) The function $f: [0,1] \to \mathbb{R}, f(x) = x^2$, uniformly continuous.
- 2. Prove that a map $f: X \to Y$ between metric spaces is continuous if and only if the preimage $f^{-1}(C) \subset X$ of every closed subset $C \subset Y$ is closed in X.

3. Give a rigorous proof that the equation below has at least one real solution $x \in \mathbb{R}$.

$$x^{2020} + \frac{\pi}{1 + x^2 + \sin^2 x} = 10^{100}$$

Please do not attempt to find the solution *explicitly*.