Homework Set 6

Due: Nov 18, 2020 (via Blackboard, by 11.59pm)

To be handed in:

Please remember that all problems will be graded!

1. Decide if each of the statements below is true or false. If it is true, give a complete proof; if it is false, give an explicit counter-example.
(a) There exists a monotonic function $f:[0,1] \rightarrow \mathbb{R}$ which is discontinuous at every point of the Cantor set P described in Lecture 6.
(b) There exists a monotonic function $f:[0,1] \rightarrow \mathbb{R}$ which is continuous at every point of the Cantor set P described in Lecture 6 .
(c) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on $\mathbb{R} \backslash\{0\}$, and $\lim _{x \rightarrow 0} f^{\prime}(x)=2020$. Then $f(x)$ is also differentiable at $x=0$ and $f^{\prime}(0)=2020$.
(d) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous everywhere, differentiable on $\mathbb{R} \backslash\{0\}$, and $\lim _{x \rightarrow 0} f^{\prime}(x)=2020$. Then $f(x)$ is also differentiable at $x=0$ and $f^{\prime}(0)=2020$.
(e) The function $\psi:[0,1] \rightarrow \mathbb{R}$ given by

$$
\psi(x)=\left\{\begin{aligned}
1, & \text { if } x \in \mathbb{Q} \\
-1, & \text { if } x \notin \mathbb{Q}
\end{aligned}\right.
$$

is Riemann-Stieltjes integrable on $[0,1]$, i.e., $\psi \in \mathcal{R}(\alpha)$.
(f) If a bounded function $f:[0,1] \rightarrow \mathbb{R}$ is such that f^{2} is Riemann-Stieltjes integrable, then so is f; i.e., $f^{2} \in \mathcal{R}(\alpha)$ implies $f \in \mathcal{R}(\alpha)$.
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq|x-y| \phi(|x-y|)
$$

where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $\phi(0)=0$. Prove that f must be a constant function.
Hint: Compute $f^{\prime}(x)$ using the definition.
3. Compute the Riemann-Stieltjes integral $\int_{0}^{1} x^{2} \mathrm{~d} \alpha$, where $\alpha(x)= \begin{cases}0, & \text { if } x \leq \frac{1}{2}, \\ 5, & \text { if } x>\frac{1}{2} .\end{cases}$

