Homework Set 6

DUE: NOV 18, 2020 (VIA BLACKBOARD, BY 11.59PM)

To be handed in:

Please remember that all problems will be graded!

- 1. Decide if each of the statements below is **true** or **false**. If it is true, give a complete **proof**; if it is false, give an explicit **counter-example**.
 - (a) There exists a monotonic function $f: [0,1] \to \mathbb{R}$ which is discontinuous at every point of the Cantor set P described in Lecture 6.
 - (b) There exists a monotonic function $f: [0,1] \to \mathbb{R}$ which is continuous at every point of the Cantor set P described in Lecture 6.
 - (c) Suppose $f \colon \mathbb{R} \to \mathbb{R}$ is differentiable on $\mathbb{R} \setminus \{0\}$, and $\lim_{x \to 0} f'(x) = 2020$. Then f(x) is also differentiable at x = 0 and f'(0) = 2020.
 - (d) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere, differentiable on $\mathbb{R} \setminus \{0\}$, and $\lim_{x \to 0} f'(x) = 2020$. Then f(x) is also differentiable at x = 0 and f'(0) = 2020.
 - (e) The function $\psi \colon [0,1] \to \mathbb{R}$ given by

$$\psi(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ -1, & \text{if } x \notin \mathbb{Q}, \end{cases}$$

is Riemann-Stieltjes integrable on [0, 1], i.e., $\psi \in \mathcal{R}(\alpha)$.

- (f) If a bounded function $f: [0,1] \to \mathbb{R}$ is such that f^2 is Riemann-Stieltjes integrable, then so is f; i.e., $f^2 \in \mathcal{R}(\alpha)$ implies $f \in \mathcal{R}(\alpha)$.
- 2. Suppose $f \colon \mathbb{R} \to \mathbb{R}$ satisfies

$$|f(x) - f(y)| \le |x - y| \phi(|x - y|),$$

where $\phi \colon \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\phi(0) = 0$. Prove that f must be a constant function.

Hint: Compute f'(x) using the definition.

3. Compute the Riemann-Stieltjes integral
$$\int_0^1 x^2 \, d\alpha$$
, where $\alpha(x) = \begin{cases} 0, & \text{if } x \le \frac{1}{2}, \\ 5, & \text{if } x > \frac{1}{2}. \end{cases}$