Solutions to Homework Set 6

1. Decide if each of the statements below is true or false. If it is true, give a complete proof; if it is false, give an explicit counter-example.
(a) There exists a monotonic function $f:[0,1] \rightarrow \mathbb{R}$ which is discontinuous at every point of the Cantor set P described in Lecture 6 .
(b) There exists a monotonic function $f:[0,1] \rightarrow \mathbb{R}$ which is continuous at every point of the Cantor set P described in Lecture 6 .
(c) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on $\mathbb{R} \backslash\{0\}$, and $\lim _{x \rightarrow 0} f^{\prime}(x)=2020$. Then $f(x)$ is also differentiable at $x=0$ and $f^{\prime}(0)=2020$.
(d) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous everywhere, differentiable on $\mathbb{R} \backslash\{0\}$, and $\lim _{x \rightarrow 0} f^{\prime}(x)=2020$. Then $f(x)$ is also differentiable at $x=0$ and $f^{\prime}(0)=2020$.
(e) The function $\psi:[0,1] \rightarrow \mathbb{R}$ given by

$$
\psi(x)=\left\{\begin{aligned}
1, & \text { if } x \in \mathbb{Q} \\
-1, & \text { if } x \notin \mathbb{Q}
\end{aligned}\right.
$$

is Riemann-Stieltjes integrable on $[0,1]$, i.e., $\psi \in \mathcal{R}(\alpha)$.
(f) If a bounded function $f:[0,1] \rightarrow \mathbb{R}$ is such that f^{2} is Riemann-Stieltjes integrable, then so is f; i.e., $f^{2} \in \mathcal{R}(\alpha)$ implies $f \in \mathcal{R}(\alpha)$.

Solution:

(a) FALSE: The set of discontinuities of a monotonic function is countable (Video 5 of Lecture 16), while the Cantor set P is uncountable (Video 4 of Lecture 6). Therefore, no such function exists.
(b) TRUE: Just take any monotonic function $f:[0,1] \rightarrow \mathbb{R}$ which is continuous at all points of $[0,1] \supset P$, such as $f(x)=x$.
(c) FALSE: For instance, consider the function $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}2020 x-1, & \text { if } x<0 \\ 2020 x+1, & \text { if } x>0\end{cases}
$$

Clearly, $f(x)$ is differentiable on $\mathbb{R} \backslash\{0\}$, and $f^{\prime}(x)=2020$ for all $x \neq 0$, but $f(x)$ is not differentiable at $x=0$.
(d) TRUE: Under the stated assumptions, we may apply L'Hospital's rule (Video 2 of Lecture 18) and compute:

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{1}=2020
$$

Therefore $f(x)$ is differentiable at $x=0$, and $f^{\prime}(0)=2020$.
(e) FALSE: For any partition $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$ of [0,1$]$, we have

$$
m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} \psi(x)=-1 \quad \text { and } \quad M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} \psi(x)=1,
$$

because every interval $\left[x_{i-1}, x_{i}\right]$ contains both rational and irrational numbers. In particular, the lower and upper Riemann-Stieltjes sums for ψ are:

$$
\begin{aligned}
& L(P, \psi, \alpha)=\sum_{i=1}^{n} m_{i} \Delta \alpha_{i}=-\sum_{i=1}^{n} \Delta \alpha_{i}=-(\alpha(b)-\alpha(a)) \\
& U(P, \psi, \alpha)=\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}=\sum_{i=1}^{n} \Delta \alpha_{i}=\alpha(b)-\alpha(a)
\end{aligned}
$$

Therefore, for any partition P, we have

$$
U(P, \psi, \alpha)-L(P, \psi, \alpha)=2(\alpha(b)-\alpha(a))>0,
$$

which makes $U(P, \psi, \alpha)-L(P, \psi, \alpha)<\varepsilon$ impossible if we choose $0<\varepsilon<2(\alpha(b)-\alpha(a))$. Thus, ψ is not Riemann-Stieltjes integrable.
(f) FALSE: Take $\psi:[0,1] \rightarrow \mathbb{R}$ to be the function from part (e). Clearly, $\psi^{2}(x)=1$ for all $x \in[0,1]$ and hence $\psi^{2} \in \mathcal{R}(\alpha)$, while, by part (e), we have $\psi \notin \mathcal{R}(\alpha)$.
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
|f(x)-f(y)| \leq|x-y| \phi(|x-y|)
$$

where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $\phi(0)=0$. Prove that f must be a constant function.
Hint: Compute $f^{\prime}(x)$ using the definition.

Solution:

Since $\phi(x)$ is continuous and $\phi(0)=0$, we have:

$$
\left|f^{\prime}\left(x_{0}\right)\right|=\lim _{x \rightarrow x_{0}}\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right| \leq \lim _{x \rightarrow x_{0}} \phi\left(\left|x-x_{0}\right|\right)=0 .
$$

Therefore, $f(x)$ is differentiable at all $x \in \mathbb{R}$ and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$. By the Mean Value Theorem, it follows that $f(x)=f(y)$ for all $x, y \in \mathbb{R}$, i.e., f is a constant function.
3. Compute the Riemann-Stieltjes integral $\int_{0}^{1} x^{2} \mathrm{~d} \alpha$, where $\alpha(x)= \begin{cases}0, & \text { if } x \leq \frac{1}{2}, \\ 5, & \text { if } x>\frac{1}{2} .\end{cases}$

Solution:

By Video 6 of Lecture 20, letting $f(x)=x^{2}$, we have:

$$
\int_{0}^{1} x^{2} \mathrm{~d} \alpha=5 f\left(\frac{1}{2}\right)=\frac{5}{4} .
$$

