Homework Set 7

DUE: DEC 2, 2020 (VIA BLACKBOARD, BY 11.59PM)

To be handed in:
Please remember that all problems will be graded!
1. Prove that the function $f(x) = \sum_{n=1}^{\infty} \frac{\cos(2020^n x^{2n})}{2^n}$ is continuous at every $x \in \mathbb{R}$.
Hint: Use Video 6 of Lecture 23.
2. Consider the sequence of functions $f_n \colon [-1,1] \to \mathbb{R}$, given by $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$.
(a) Find the pointwise limit of $f_n(x)$, i.e., compute $f_{\infty}(x) := \lim_{n \to \infty} f_n(x)$.
(b) Find the pointwise limit of $f'_n(x)$, i.e., compute $g_{\infty}(x) := \lim_{n \to \infty} f'_n(x)$.
(c) Prove that $f_n(x)$ converges uniformly to $f_{\infty}(x)$ on the interval $[-1, 1]$.
(d) Prove that $f'_n(x)$ does not converge uniformly to $g_{\infty}(x)$ on the interval $[-1, 1]$.
(e) Can you explain why $f'_{\infty}(x) = g_{\infty}(x)$ for all $x \neq 0$, but this fails for $x = 0$?
3. Suppose the functions $f_n \colon E \to \mathbb{R}$ are uniformly continuous, and converge uniformly to $f_\infty \colon E \to \mathbb{R}$. Prove that f_∞ is also uniformly continuous.
4. Consider the function $f: (0,1) \to \mathbb{R}$ given by $f(x) = \frac{1}{x}$. Does there exist a sequence of polynomials $p_n(x)$ that converges uniformly to $f: (0,1) \to \mathbb{R}$? Justify.