Solutions to Homework Set 7

1. Prove that the function $f(x) = \sum_{n=1}^{\infty} \frac{\cos(2020^n x^{2n})}{2^n}$ is continuous at every $x \in \mathbb{R}$.

Hint: Use Video 6 of Lecture 23.

Solution:

The given function is
$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
, where $f_n(x) = \frac{\cos(2020^n x^{2n})}{2^n}$. Clearly,
 $|f_n(x)| \leq \frac{1}{2^n}$ for all $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. By Video 6 of Lecture 23, it follows

that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly. Therefore, since f(x) is the uniform limit of continuous functions, it is continuous (see Video 2 of Lecture 24).

- 2. Consider the sequence of functions $f_n: [-1,1] \to \mathbb{R}$, given by $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$.
 - (a) Find the pointwise limit of $f_n(x)$, i.e., compute $f_{\infty}(x) := \lim_{n \to \infty} f_n(x)$.
 - (b) Find the pointwise limit of $f'_n(x)$, i.e., compute $g_{\infty}(x) := \lim_{n \to \infty} f'_n(x)$.
 - (c) Prove that $f_n(x)$ converges uniformly to $f_{\infty}(x)$ on the interval [-1, 1].
 - (d) Prove that $f'_n(x)$ does not converge uniformly to $g_{\infty}(x)$ on the interval [-1, 1].
 - (e) Can you explain why $f'_{\infty}(x) = g_{\infty}(x)$ for all $x \neq 0$, but this fails for x = 0?

Solution:

(a)
$$f_{\infty}(x) := \lim_{n \to \infty} f_n(x) = \sqrt{x^2} = |x| \text{ for all } x \in [-1, 1]$$

(b)
$$g_{\infty}(x) := \lim_{n \to \infty} f'_n(x) = \lim_{n \to \infty} \frac{x}{\sqrt{x^2 + \frac{1}{n}}} = \begin{cases} 1 & \text{if } x \in (0, 1], \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x \in [-1, 0). \end{cases}$$

(c) Given $\varepsilon > 0$, let $N \in \mathbb{N}$ be such that $N > \frac{1}{\varepsilon^2}$. Then, for all $x \in [-1, 1]$, and $n \ge N$,

$$|f_n(x) - f_\infty(x)| = \sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2} = \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + \sqrt{x^2}} \le \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}}} \le \frac{\frac{1}{n}}{\sqrt{\frac{1}{n}}} = \frac{1}{\sqrt{n}} < \varepsilon.$$

Therefore, $f_n(x)$ converges uniformly to $f_{\infty}(x)$ on the interval [-1, 1].

(d) Since $g_{\infty}(x)$, which was computed in (b), is discontinuous at x = 0, it cannot be the uniform limit of the continuous functions $f'_n(x) = \frac{x}{\sqrt{x^2 + \frac{1}{n}}}$, cf. Video 2 of Lecture 24.

(e) The equality $f'_{\infty}(x) = g_{\infty}(x)$ holds for all $x \neq 0$ since (cf. Video 6 of Lecture 24), for any compact subset $E \subset (0, 1]$, the sequence $f'_n(x)$ converges uniformly to $g_{\infty}(x)$ on E; similarly for compact subsets $E \subset [-1, 0)$. However, this equality is not well-posed at x = 0, since $f_{\infty}(x) = |x|$ is not differentiable at x = 0.

3. Suppose the functions $f_n: E \to \mathbb{R}$ are uniformly continuous, and converge uniformly to $f_{\infty}: E \to \mathbb{R}$. Prove that f_{∞} is also uniformly continuous.

Solution:

Given $\varepsilon > 0$, since $f_n \colon E \to \mathbb{R}$ converges uniformly to $f_\infty \colon E \to \mathbb{R}$, there exists $N \in \mathbb{N}$ such that if $n \ge N$, then for all $p \in E$, we have $|f_n(p) - f_\infty(p)| < \frac{\varepsilon}{3}$. Moreover, since $f_N \colon E \to \mathbb{R}$ is uniformly continuous, there exists $\delta > 0$ such that if $x, y \in E$ satisfy $d(x, y) < \delta$, then $|f_N(x) - f_N(y)| < \frac{\varepsilon}{3}$. Altogether, by the triangle inequality,

$$|f_{\infty}(x) - f_{\infty}(y)| \le |f_{\infty}(x) - f_{N}(x)| + |f_{N}(x) - f_{N}(y)| + |f_{N}(y) - f_{\infty}(y)| < \varepsilon$$

for any $x, y \in E$ with $d(x, y) < \delta$. Thus, $f_{\infty}(x)$ is uniformly continuous.

4. Consider the function $f: (0,1) \to \mathbb{R}$ given by $f(x) = \frac{1}{x}$. Does there exist a sequence of polynomials $p_n(x)$ that converges uniformly to $f: (0,1) \to \mathbb{R}$? Justify. Solution:

No, there does not exist such a sequence $p_n(x)$ of polynomials. If $p_n(x)$ are polynomials, then they define continuous functions $p_n: [0,1] \to \mathbb{R}$. Therefore, the uniform limit of $p_n(x)$ is also a continuous function $\phi: [0,1] \to \mathbb{R}$, by Video 2 of Lecture 24. In particular, if $p_n(x)$ converged uniformly to $f: (0,1) \to \mathbb{R}$, $f(x) = \frac{1}{x}$, then f(x) would admit a continuous (finite) extension to x = 0, which is a contradiction.