
MAT320/640, Fall 2020 Renato Ghini Bettiol

Solutions to Homework Set 7

1. Prove that the function f(x) =
∞∑
n=1

cos
(
2020nx2n

)
2n

is continuous at every x ∈ R.

Hint: Use Video 6 of Lecture 23.

Solution:

The given function is f(x) =
∞∑
n=1

fn(x), where fn(x) =
cos
(
2020nx2n

)
2n

. Clearly,

|fn(x)| ≤
1

2n
for all n ∈ N, and

∞∑
n=1

1

2n
= 1. By Video 6 of Lecture 23, it follows

that
∞∑
n=1

fn(x) converges uniformly. Therefore, since f(x) is the uniform limit of con-

tinuous functions, it is continuous (see Video 2 of Lecture 24).

2. Consider the sequence of functions fn : [−1, 1]→ R, given by fn(x) =

√
x2 +

1

n
.

(a) Find the pointwise limit of fn(x), i.e., compute f∞(x) := lim
n→∞

fn(x).

(b) Find the pointwise limit of f ′n(x), i.e., compute g∞(x) := lim
n→∞

f ′n(x).

(c) Prove that fn(x) converges uniformly to f∞(x) on the interval [−1, 1].
(d) Prove that f ′n(x) does not converge uniformly to g∞(x) on the interval [−1, 1].
(e) Can you explain why f ′∞(x) = g∞(x) for all x 6= 0, but this fails for x = 0?

Solution:

(a) f∞(x) := lim
n→∞

fn(x) =
√
x2 = |x| for all x ∈ [−1, 1]

(b) g∞(x) := lim
n→∞

f ′n(x) = lim
n→∞

x√
x2 + 1

n

=


1 if x ∈ (0, 1],

0 if x = 0,

−1 if x ∈ [−1, 0).

(c) Given ε > 0, let N ∈ N be such that N >
1

ε2
. Then, for all x ∈ [−1, 1], and n ≥ N ,

|fn(x)− f∞(x)| =
√
x2 +

1

n
−
√
x2 =

1
n√

x2 + 1
n +
√
x2
≤

1
n√

x2 + 1
n

≤
1
n√
1
n

=
1√
n
< ε.

Therefore, fn(x) converges uniformly to f∞(x) on the interval [−1, 1].
(d) Since g∞(x), which was computed in (b), is discontinuous at x = 0, it cannot be the

uniform limit of the continuous functions f ′n(x) =
x√

x2 + 1
n

, cf. Video 2 of Lecture 24.



(e) The equality f ′∞(x) = g∞(x) holds for all x 6= 0 since (cf. Video 6 of Lecture 24),
for any compact subset E ⊂ (0, 1], the sequence f ′n(x) converges uniformly to g∞(x) on
E; similarly for compact subsets E ⊂ [−1, 0). However, this equality is not well-posed
at x = 0, since f∞(x) = |x| is not differentiable at x = 0.

3. Suppose the functions fn : E → R are uniformly continuous, and converge uniformly
to f∞ : E → R. Prove that f∞ is also uniformly continuous.

Solution:

Given ε > 0, since fn : E → R converges uniformly to f∞ : E → R, there exists N ∈ N
such that if n ≥ N , then for all p ∈ E, we have |fn(p) − f∞(p)| < ε

3
. Moreover, since

fN : E → R is uniformly continuous, there exists δ > 0 such that if x, y ∈ E satisfy

d(x, y) < δ, then |fN (x)− fN (y)| < ε

3
. Altogether, by the triangle inequality,

|f∞(x)− f∞(y)| ≤ |f∞(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f∞(y)| < ε

for any x, y ∈ E with d(x, y) < δ. Thus, f∞(x) is uniformly continuous.

4. Consider the function f : (0, 1)→ R given by f(x) =
1

x
. Does there exist a sequence of

polynomials pn(x) that converges uniformly to f : (0, 1)→ R? Justify.

Solution:

No, there does not exist such a sequence pn(x) of polynomials. If pn(x) are polynomials,
then they define continuous functions pn : [0, 1] → R. Therefore, the uniform limit
of pn(x) is also a continuous function φ : [0, 1] → R, by Video 2 of Lecture 24. In

particular, if pn(x) converged uniformly to f : (0, 1) → R, f(x) =
1

x
, then f(x) would

admit a continuous (finite) extension to x = 0, which is a contradiction.
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