Problem 1 (40 pts): Decide if each of the statements below is true or false. If it is
true, give a complete proof; if it is false, give an explicit counter-example

a)

(5 pts) The set A = {a +bvV2+cemab,ceE Q} is countable.

TRUE: There is a bijection f: A — Q®, f(a +bV/2 + cr) = (a,b,c), and Q° is
countable since it is a finite Cartesian product of the countable set @

1 1
(5 pts) The set B = ﬂ <——, 1+ —) is compact.
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TRUE: B = [0, 1] is compact, by the Heine—Borel Theorem.

(5 pts) If a subset £ C R is such that VM > 0 there exists x € F with |z| > M,
then sup £ does not exist.

FALSE: Let £ = (—00,0]. Clearly, VM > 0, x = —M € E and |z| = M, but
sup F = 0.
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(5 pts) If {z,} is a Cauchy sequence in R, then the sequence {sin(x,)} is also
Cauchy.

TRUE: Since R is complete, a sequence is Cauchy if and only if it is convergent.
Moreover, f(x) = sinx is continuous, so it takes convergent sequences to convergent
sequences. Alternative proof: use that | sin(z,) — sin(x,,)| < |2, — T

(5 pts) If {z,} is a sequence in R such that {sin(x,)} is Cauchy, then {z,} is also
Cauchy.

FALSE: Take z,, = 2mn, and note that sin(x,) = 0 for alln € N so {sin(x,)} is
clearly Cauchy, but x,, is not Cauchy since |x, — x,,| > 27 if n # m.

(5 pts) If f: R - R and g: R — R are uniformly continuous functions, then
(fog): R — R is also uniformly continuous.

TRUE: Since f is uniformly continuous, Ve > 0, 36; > 0 such that |z — y| < &
implies |f(x) — f(y)| < e. Now, since g is uniformly continuous, 362 > 0 such that
[t — s| < 09 implies |g(t) — g(s)| < 01. Thus, if t,s € R satisfy [t — s| < d2, then
£ (9(t)) — flg(s))] <e.

(5 pts) If f,: E — R is a sequence of differentiable functions that converges uni-
formly to foo: £ — R, then f. is also differentiable.
FALSE: As shown in HW7, the sequence f,(x) = \/x? +% of differentiable func-

tions converges uniformly on E = [—1,1] to fo.o(x) = |x|, which is not differentiable
at v = 0.



Problem 2 (15 pts): Let {zx} be a convergent sequence of real numbers, with

lim z;, = 2. Let
k—o0

€T +...+m
4y = ———" pel,
n

be the sequence of averages of {x;}. Prove that lim a, = 7.

n—o0

Hint: Recall lim a, = 2., means Ve > 0,3IN € IN such that |a, — 2| < e if n > N.

n—oo

Since ., converges to T, given € > 0, there exists N € IN such that |z, — x| < £/2
ifn>N. Let M = max |z; — 2|, and N’ € IN be such that N' > 2(N — 1)M/e.

1<j<N-1

Then, if n > max{N, N'}, we have:
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proving that lim a, = T.
n—oo



Problem 3 (10 pts): An isometry of a metric space (X, d) is a map ¢: X — X that
preserves distances, i.e., d(p(z), p(y)) = d(x,y) for all z,y € X. Suppose f: X — R
is a uniformly continuous function, and let G denote the set of all isometries of (X, d).
Prove that the family F = {(foy): X — R : ¢ € G} is equicontinuous.

Since f: X — R is uniformly continuous, given € > 0, there exists 6 > 0 such that
d(xz,y) < § implies |f(x) — f(y)] < e. Let ¢ € G and consider the corresponding
(fop)e F. Ifw,y € X are such that d(z,y) < 0, then d(o(z), ¢(y)) = d(z,y) < § and

therefore | f(p(x)) — f(p(y))| < e. Since this holds for arbitrary ¢ € G, it follows that
the family F is equicontinuous.

Problem 4 (15 pts): For what values of z € R is the following series absolutely
convergent?

i $2 $2 IS x3 I4 $4

X
E; + ;? + E;z + 5;5 + E;; + E;; + Egz + E;I 4+ ...

Let a,, be the nth element in the series, and note that:

[1z]F T
"%:(%) ifn=2k—1 is odd,
VIRl = T _ (el
\ = (7) if n =2k is even.

k 1
2k—1 2
Therefore limsup {/|a,| = klim (%) = (%) < 1if and only if |x| < 5. Thus,
—00

by the Root Test, the above series is absolutely convergent if |z| < 5.
On the other hand, if |x| > 5, then the series diverges, since the sequence a, does not
converge to zero, because the subsequence as,—1 of odd terms satisfies |agr—1| > 1.



Problem 5 (20 pts): Consider the function f: [0,1] — R given by

0, ifzé¢QqQ,
f(ZE) = 1 if _ P 1 =
= fex==re Q, with ged(p,q) = 1.

(a) Given € > 0, prove that the set F' = {z € [0,1] : f(z) > €} is finite.

(b) Find a partition P ={0 =29 < 21 < --- < &,_1 < x, = 1} such that F' is covered
by intervals [z;_1, z;] whose combined length does not exceed €. Compute the upper
and lower Riemann sums U(f, P) and L(f, P) with this partition.

(c) Use the above to conclude whether or not f(z) is Riemann-integrable on [0, 1].

1
If it is Riemann-integrable, then compute / f(z)dz.
0

(a) Given € > 0, we have that

1
F={wG[O,IJNQ:xZE,gcd(p,q)zl,q2§—},
q €

so there is a natural bijection between F' and the set

U {peZ:pl <q, ged(p,q) = 1},

1
QS%
qeN

Clearly, the set of denominators {q € N : ¢ < %} 1$ finite, and, for each such q, there

are only finitely many p € Z such that |p| < q and ged(p, q) = 1. Thus, the above is a
finite union of finite sets, hence finite.

(b) Since F is finite, let us write F = {t; <ty < --+ < ty}, and then define'
p= ({0,1}U{tji;—k:1§j§k})ﬂ[0,1]:{0:x0<$1 << T <@ =1}

Up to making € > 0 even smaller, we implicitly assume that ¢ < k(tj41 — t;) for
all j = 1,...,k — 1, so that the intervals [t; — o ,t; + 5] are disjoint. Clearly, the
combined length of intervals [x;_1, x;] that contain a point of F', i.e., intervals of the form
[ti—a.tj+2:]N[0,1], 5 = 1,..., k does not exceed ¢; in other words, > Az; < e.

FN[z;—1,7;]#£0
Now, observe that:
o If FN[xi—y, 2] #0, then e < M; <1 and Ax; < 5.
o If FN[xi_q,x;] =0, then M; < e.
In both cases, m; = 0 since f(x) =0 on the dense set [0,1]\ Q. Therefore, altogether,
U(f.P) = Zn:MiAxi = Y MAn+ Y MAsz
i=1

FO[z;_1,2;]#0 FOlz;—q,2]=0

'Note that 0,1 € F if 0 < & < 1, so the points t; — & and #;, + 53 are outside the interval [0,1],
hence the need to intersect with [0, 1].



< Z AIZ + Z € Al'z

FNlzi—1,z;]#0 FNlz;—1,z:;]=0

<ege+e Z Az,

FNlzi—1,z;]=0

<Ee+4e =2

1=1

(c) By the above, for all e > 0, there exists a partition P of [0, 1] such that
U(f,P)—L(f,P) < 2e.

Therefore, f(x) is Riemann-integrable on [0,1], and

/Olf(:v)dxz/:bf(x)dlebf(x)dx:&



