
Problem 1 (40 pts): Decide if each of the statements below is true or false. If it is
true, give a complete proof; if it is false, give an explicit counter-example

a) (5 pts) The set A =
{
a+ b

√
2 + cπ : a, b, c ∈ Q

}
is countable.

TRUE: There is a bijection f : A → Q3, f(a + b
√

2 + cπ) = (a, b, c), and Q3 is
countable since it is a finite Cartesian product of the countable set Q

b) (5 pts) The set B =
⋂
n∈N

(
− 1

n
, 1 +

1

n

)
is compact.

TRUE: B = [0, 1] is compact, by the Heine–Borel Theorem.

c) (5 pts) If a subset E ⊂ R is such that ∀M > 0 there exists x ∈ E with |x| ≥ M ,
then supE does not exist.

FALSE: Let E = (−∞, 0]. Clearly, ∀M > 0, x = −M ∈ E and |x| = M , but
supE = 0.

d) (5 pts) inf
y∈R

(
sup
x∈R

x2

x2 + y2 + 1

)
= sup

x∈R

(
inf
y∈R

x2

x2 + y2 + 1

)
FALSE: inf

y∈R

(
sup
x∈R

x2

x2 + y2 + 1

)
︸ ︷︷ ︸

=1, ∀y∈R

= 1, while sup
x∈R

(
inf
y∈R

x2

x2 + y2 + 1

)
︸ ︷︷ ︸

=0, ∀x∈R

= 0.

e) (5 pts) If {xn} is a Cauchy sequence in R, then the sequence {sin(xn)} is also
Cauchy.

TRUE: Since R is complete, a sequence is Cauchy if and only if it is convergent.
Moreover, f(x) = sin x is continuous, so it takes convergent sequences to convergent
sequences. Alternative proof: use that | sin(xn)− sin(xm)| ≤ |xn − xm|.

f) (5 pts) If {xn} is a sequence in R such that {sin(xn)} is Cauchy, then {xn} is also
Cauchy.

FALSE: Take xn = 2πn, and note that sin(xn) = 0 for all n ∈ N so {sin(xn)} is
clearly Cauchy, but xn is not Cauchy since |xn − xm| ≥ 2π if n 6= m.

g) (5 pts) If f : R → R and g : R → R are uniformly continuous functions, then
(f ◦ g) : R→ R is also uniformly continuous.

TRUE: Since f is uniformly continuous, ∀ε > 0, ∃δ1 > 0 such that |x − y| < δ1
implies |f(x)− f(y)| < ε. Now, since g is uniformly continuous, ∃δ2 > 0 such that
|t − s| < δ2 implies |g(t) − g(s)| < δ1. Thus, if t, s ∈ R satisfy |t − s| < δ2, then
|f(g(t))− f(g(s))| < ε.

h) (5 pts) If fn : E → R is a sequence of differentiable functions that converges uni-
formly to f∞ : E → R, then f∞ is also differentiable.

FALSE: As shown in HW7, the sequence fn(x) =
√
x2 + 1

n
of differentiable func-

tions converges uniformly on E = [−1, 1] to f∞(x) = |x|, which is not differentiable
at x = 0.



Problem 2 (15 pts): Let {xk} be a convergent sequence of real numbers, with
lim
k→∞

xk = x∞. Let

an =
x1 + · · ·+ xn

n
, n ∈ N,

be the sequence of averages of {xk}. Prove that lim
n→∞

an = x∞.

Hint: Recall lim
n→∞

an = x∞ means ∀ε > 0,∃N ∈ N such that |an − x∞| < ε if n ≥ N .

Since xn converges to x∞, given ε > 0, there exists N ∈ N such that |xn − x∞| < ε/2
if n ≥ N . Let M = max

1≤j≤N−1
|xj − x∞|, and N ′ ∈ N be such that N ′ > 2(N − 1)M/ε.

Then, if n ≥ max{N,N ′}, we have:

|an − x∞| =
∣∣∣∣x1 + · · ·+ xn

n
− x∞

∣∣∣∣
=

∣∣∣∣(x1 − x∞) + · · ·+ (xn − x∞)

n

∣∣∣∣
=

∣∣∣∣(x1 − x∞) + · · ·+ (xN−1 − x∞)

n
+

(xN − x∞) + · · ·+ (xn − x∞)

n

∣∣∣∣
≤
∣∣∣∣(x1 − x∞) + · · ·+ (xN−1 − x∞)

n

∣∣∣∣+

∣∣∣∣(xN − x∞) + · · ·+ (xn − x∞)

n

∣∣∣∣
≤ (N − 1)

n
max

1≤j≤N−1
|xj − x∞|+

|xN − x∞|+ · · ·+ |xn − x∞|
n

<
(N − 1)M

n
+

(n−N + 1)

n

ε

2

<
ε

2
+
ε

2
= ε,

proving that lim
n→∞

an = x∞.



Problem 3 (10 pts): An isometry of a metric space (X, d) is a map ϕ : X → X that
preserves distances, i.e., d(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X. Suppose f : X → R

is a uniformly continuous function, and let G denote the set of all isometries of (X, d).
Prove that the family F = {(f ◦ ϕ) : X → R : ϕ ∈ G} is equicontinuous.

Since f : X → R is uniformly continuous, given ε > 0, there exists δ > 0 such that
d(x, y) < δ implies |f(x) − f(y)| < ε. Let ϕ ∈ G and consider the corresponding
(f ◦ϕ) ∈ F . If x, y ∈ X are such that d(x, y) < δ, then d(ϕ(x), ϕ(y)) = d(x, y) < δ and
therefore |f(ϕ(x))− f(ϕ(y))| < ε. Since this holds for arbitrary ϕ ∈ G, it follows that
the family F is equicontinuous.

Problem 4 (15 pts): For what values of x ∈ R is the following series absolutely
convergent?

x

5
+
x

7
+
x2

52
+
x2

72
+
x3

53
+
x3

73
+
x4

54
+
x4

74
+ . . .

Let an be the nth element in the series, and note that:

n
√
|an| =


n

√
|x|k

5k
=

(
|x|
5

) k
2k−1

if n = 2k − 1 is odd,

n

√
|x|k

7k
=

(
|x|
7

) k
2k

if n = 2k is even.

Therefore lim sup n
√
|an| = lim

k→∞

(
|x|
5

) k
2k−1

=

(
|x|
5

) 1
2

< 1 if and only if |x| < 5. Thus,

by the Root Test, the above series is absolutely convergent if |x| < 5.
On the other hand, if |x| ≥ 5, then the series diverges, since the sequence an does not
converge to zero, because the subsequence a2k−1 of odd terms satisfies |a2k−1| ≥ 1.



Problem 5 (20 pts): Consider the function f : [0, 1]→ R given by

f(x) =

{
0, if x /∈ Q,
1
q2
, if x = p

q
∈ Q, with gcd(p, q) = 1.

(a) Given ε > 0, prove that the set F = {x ∈ [0, 1] : f(x) ≥ ε} is finite.

(b) Find a partition P = {0 = x0 < x1 < · · · < xn−1 < xn = 1} such that F is covered
by intervals [xi−1, xi] whose combined length does not exceed ε. Compute the upper
and lower Riemann sums U(f, P ) and L(f, P ) with this partition.

(c) Use the above to conclude whether or not f(x) is Riemann-integrable on [0, 1].

If it is Riemann-integrable, then compute

∫ 1

0

f(x) dx.

(a) Given ε > 0, we have that

F =

{
x ∈ [0, 1] ∩Q : x =

p

q
, gcd(p, q) = 1, q2 ≤ 1

ε

}
,

so there is a natural bijection between F and the set⋃
q≤ 1√

ε

q∈N

{
p ∈ Z : |p| ≤ q, gcd(p, q) = 1

}
.

Clearly, the set of denominators {q ∈ N : q ≤ 1√
ε
} is finite, and, for each such q, there

are only finitely many p ∈ Z such that |p| ≤ q and gcd(p, q) = 1. Thus, the above is a
finite union of finite sets, hence finite.

(b) Since F is finite, let us write F = {t1 < t2 < · · · < tk}, and then define1

P =
(
{0, 1} ∪

{
tj ±

ε

2k
: 1 ≤ j ≤ k

})
∩ [0, 1] = {0 = x0 < x1 < · · · < xn−1 < xn = 1}.

Up to making ε > 0 even smaller, we implicitly assume that ε < k (tj+1 − tj) for
all j = 1, . . . , k − 1, so that the intervals [tj − ε

2k
, tj + ε

2k
] are disjoint. Clearly, the

combined length of intervals [xi−1, xi] that contain a point of F , i.e., intervals of the form
[tj− ε

2k
, tj+

ε
2k

]∩[0, 1], j = 1, . . . , k does not exceed ε; in other words,
∑

F∩[xi−1,xi] 6=∅
∆xi ≤ ε.

Now, observe that:

• If F ∩ [xi−1, xi] 6= ∅, then ε ≤Mi ≤ 1 and ∆xi ≤ ε
k
.

• If F ∩ [xi−1, xi] = ∅, then Mi < ε.

In both cases, mi = 0 since f(x) = 0 on the dense set [0, 1] \Q. Therefore, altogether,

U(f, P ) =
n∑

i=1

Mi ∆xi =
∑

F∩[xi−1,xi] 6=∅

Mi ∆xi +
∑

F∩[xi−1,xi]=∅

Mi ∆xi

1Note that 0, 1 ∈ F if 0 < ε < 1, so the points t1 − ε
2k and tk + ε

2k are outside the interval [0, 1],
hence the need to intersect with [0, 1].



<
∑

F∩[xi−1,xi]6=∅

∆xi +
∑

F∩[xi−1,xi]=∅

ε∆xi

≤ ε+ ε
∑

F∩[xi−1,xi]=∅

∆xi

< ε+ ε = 2ε.

L(f, P ) =
n∑

i=1

mi ∆xi = 0.

(c) By the above, for all ε > 0, there exists a partition P of [0, 1] such that

U(f, P )− L(f, P ) < 2ε.

Therefore, f(x) is Riemann-integrable on [0, 1], and∫ 1

0

f(x) dx =

∫ b

a

f(x) dx =

∫ b

a

f(x) dx = 0.


