Special sequenas
Recall:
Squeeze Tum: If $a_{n} \leq b_{n} \leq c_{n}$ are sequences of veal Mounters, sit. $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then $b_{n} \rightarrow L$.

Pf: Since $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, $\forall \varepsilon>0 \quad \exists N, M \in \mathbb{N} \quad$ sit.

$$
\begin{align*}
n \geqslant N & \Rightarrow\left|a_{n}-L\right|<\varepsilon \\
& \Leftrightarrow L-\varepsilon<a_{n}<L+\varepsilon \tag{1}\\
n \geqslant M & \Rightarrow\left|c_{n}-L\right|<\varepsilon \\
& \Leftrightarrow L-\varepsilon<c_{n}<L+\varepsilon \tag{2}
\end{align*}
$$

From (1), (2) and $a_{n} \leq b_{n} \leq c_{n}$, we have; for $n \geqslant \max \{M, N\}$, that,

$$
L-\varepsilon<a_{n} \leqslant b_{n} \leqslant c_{n}<L^{(2)}+\varepsilon .
$$

$\rightarrow\left|b_{n}-L\right|<\varepsilon$. This, by def., means that $b_{n} \rightarrow L$.
Thu: (a) If p so, then $\frac{1}{n^{p}} \rightarrow 0$
(b) If $p>0$, then $\sqrt[n]{p} \rightarrow 1$
(c) $\sqrt[n]{n} \rightarrow 1$
(d) If $p>0, \alpha \in \mathbb{R}, \quad \frac{n^{\alpha}}{(1+p)^{n}} \rightarrow 0$! 0
(e) If $|x|<1$, then $x^{n} \rightarrow 0$,

Pl: (a) Given $\varepsilon>0$, take $N \in \mathbb{N}$ s.t. $N>\left(\frac{1}{\varepsilon}\right)^{1 / p}$.
1 Exists by the Arclumedeon prop.
Now of $n \geqslant N$, then

$$
\left|\frac{1}{n^{p}}-0\right|=\frac{1}{n^{p}}<\frac{1}{N^{p}}=\varepsilon
$$

(b) If $p>1$, set $b_{n}=\sqrt[n]{p}-1$. Use the Squeeze Thm with $a_{n} \equiv 0, b_{n}$ as above, and c_{n} as Bellows.
By the Binomial Mm, we have

$$
(x+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}
$$

$$
\begin{aligned}
& \underbrace{1+\binom{n}{1}^{n} b_{n}}_{n} \leqslant\left(1+b_{n}\right)^{n}=(1+\sqrt[n]{p}-1)^{n}=(\sqrt[n]{p})^{n}=p . \\
& \Rightarrow 1+n b_{n} \leqslant p
\end{aligned}
$$

So we get:

Letting $c_{n}=\frac{p-1}{n}$, by the Squeeze Thu, since $a_{n} \rightarrow 0$, $c_{n} \rightarrow 0 \quad\left(b_{y} a\right)$, we here that $b_{n} \rightarrow 0$. The core $p=1$ is obvious, the case $p<1$ can be reduced to the above by using $\frac{1}{p}>1$. \square c) Let $b_{n}:=\sqrt[n]{n}-1 \geqslant 0$, and, by the Binomial the;

$$
n=(\sqrt[n]{n})^{n}=\left(1+b_{n}\right)^{n} \geqslant\binom{ n}{2} b_{n}^{2}=\frac{n(n-1)}{2} b_{n}^{2}
$$

$$
\Rightarrow \quad 1 \geqslant \frac{n-1}{2} b_{n}^{2} \Longrightarrow b_{n} \leq \sqrt{\frac{2}{n-1}}=: c n
$$

So letting $a_{n} \equiv 0, b_{n}$ as above and $c_{n}=\sqrt{\frac{2}{n-1}}$,
by the Squeeze Thu, since $a_{n} \longrightarrow 0, \quad a_{n} \longrightarrow 0$ (by a), we have that also bu $\rightarrow 0$.
d) Let $k \in \mathbb{N}$ s.t. $k>\alpha$. For $h>2 k$, then:

$$
\begin{aligned}
& \quad(1+p)^{n}>\binom{n}{k} p^{k}=\frac{n!}{(n-k)!k!} p^{k}=\frac{(n)((n-1)) \ldots \sqrt{(n-k+1)}}{k!} p^{k} \\
& n-j>\frac{n}{2} \xrightarrow{\text { Binquide }} \xrightarrow{>}\left(\frac{n}{2}\right)^{k} \frac{1}{k!} p^{k}=\frac{n^{k} p^{k}}{2^{k} k!}=\frac{n^{\alpha} p^{k}}{2^{k} k!} \cdot n^{k-\alpha} \\
& j=0, \ldots, k-1 \\
& (k<n / 2)
\end{aligned}
$$

From the dove,

> the clove,

By the Squeeze T_{m}, with $a_{n} \leq b_{n} \leq c_{n}$ as above, since $a_{n} \rightarrow 0, c_{n} \rightarrow 0$, we have $b_{n} \rightarrow 0$, as dexred.
e) Follows from previous item d), by setting $\alpha=0$, $x=\frac{1}{1+p}$; then $x^{n}=\frac{1}{(1+p)^{n}}=\frac{n^{0}}{(1+p)^{n}} \rightarrow 0$.

Series: "Suer of all elements $\left\{a_{n}\right\}$ in a sequence".

$$
\sum_{n=1}^{+\infty} a_{n}=a_{1}+a_{2}+\cdots+a_{n}+\cdots
$$

Partial sums:

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n} a_{k} \\
S_{1} & =a_{1} \\
S_{2} & =a_{1}+a_{2} \\
S_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
s_{n} & =a_{1}+\cdots+a_{n}
\end{aligned}
$$

Def: $\sum a_{n}$ is identified with the sequence $\left\{S_{n}\right\}$.
$\sum a_{n}$ converges to L if and only of $s_{n} \rightarrow L$.
(write $\sum a_{n}=L$). Similarly $\sum a_{n}$ diverges if $\left\{s_{n}\right\}$ diverges.
Cauchy Convergence Theorem: $\sum a_{n}$ converges if and only if $\forall \varepsilon>0 \quad \exists N \in N$ s.t. if $m \geqslant n \geqslant N$, then

$$
\left|\sum_{k=n}^{m} a_{k}\right|<\varepsilon
$$

P1: In \mathbb{R}, sequences ore convergent if and only if they are Cauchy. Note that

$$
\left|S_{m}-S_{n-1}\right|=|\underbrace{\left(a_{1}+\cdots+a_{\mu-1}+a_{n}+\cdots+a_{m}\right)}_{s_{m}}-(\underbrace{a_{1}+\cdots+a_{n-1}}_{s_{n-1}})|
$$

$$
=\left|\sum_{k=n}^{m} a_{k}\right| .
$$

Cor: If $\sum a_{n}$ converges, then $\left|a_{n}\right| \rightarrow 0.5$
Pf: Take $m=n$ in the above:

$$
\left|s_{n}-s_{n-1}\right|=\left|a_{n}\right|
$$

Note: The converse is FALSE: $\quad a_{n}=\frac{1}{n} \longrightarrow 0$
but $\sum_{n=1}^{\infty} \frac{1}{n}=+\infty \quad$ (harmonic series)

Comparison Test
Thu a) If $\left|a_{n}\right| \leq c_{n}$ for $n \geqslant N_{0}$, and $\sum c_{n}$ converges, then $\sum a_{n}$ converges.
b) If $a_{n} \geqslant d_{u} \geqslant 0$ for $n \geqslant N_{0}$ and $\sum d_{n}$ diverges, then $\sum a_{n}$ diverges.
Pf: a) Given $\varepsilon>0$, there exists $N \in \mathbb{N}$ sit. of $m \geqslant n \geqslant N$ $\left|\sum_{k=n}^{m} c_{k}\right|<\varepsilon \quad$ (by Cauchy Conn. Thur).
Then:
Triangle ines.

$$
\left|\sum_{k=n}^{m} a_{k}\right| \stackrel{\downarrow}{\leq} \sum_{k=n}^{m}\left|a_{k}\right| \leq \sum_{k=n}^{m} c_{k}<\varepsilon
$$

Again, by the Cauchy Conn. Turn, we have San converges.
b) is a consequence of a : If $\sum a_{n}$ converges, then apply a), and conclude that $\sum d_{n}$ must also converge (contradiction).

Geometric Series

$$
\sum_{n=0}^{+\infty} x^{n}=\frac{1}{1-x} \quad \text { if } \quad x \in[0,1)
$$

$\sum_{n=0}^{+\infty} x^{n}$ diverges otherwise, ie., if $x \notin[0,1)$.
Pf:

$$
\left.\begin{array}{rl}
n=0 \\
s_{n} & \frac{\left(1+x+x^{2}+\cdots+x^{n}\right)}{}(1-x)
\end{array}\right)=\left(1+x+x^{2}+\cdots+x^{n}\right) \text { then } \begin{aligned}
& \left.-x-x^{2}-\cdots-x^{n+1}\right)
\end{aligned}
$$

$$
S_{n}=\sum_{x=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x} \xrightarrow{n \lambda+\infty} \frac{1}{1-x} \text { if } x \in[0,1) \text {. }
$$

If $x=1$:

$$
S_{n}=\sum_{k=0}^{n} 1=n+1 \rightarrow+\infty \text { as } n \rightarrow \infty \text {. }
$$

Bonus: Why "Geometric" series?

$$
\begin{aligned}
\text { Area } & =1 \\
& =\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \\
& =\sum_{n=0}^{+\infty} \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{n} \\
& =\frac{1}{2} \sum_{n=0}^{+\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{2} \frac{1}{1-1 / 2}=1
\end{aligned}
$$

Tum: Suppose $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{n} \geqslant \cdots \geqslant 0$. Then $\sum_{n=1}^{+\infty} a_{n}$ converges if and only if $\sum_{k=0}^{+\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}^{+\cdots}$ converges.
Note:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+\cdots+a_{8}+\cdots+a_{16}+\cdots \\
& \sum_{k=0}^{+\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+16 a_{16}+\cdots
\end{aligned}
$$

Pf: Partial sumsi

$$
\begin{aligned}
& s_{n}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k} \\
& t_{k}=a_{1}+2 a_{2}+\cdots+2^{k} a_{2^{k}}=\sum_{j=0}^{k} 2^{j} a_{2^{j}}
\end{aligned}
$$

Note that $b / c a_{n} \geqslant 0$, the sequences $\left\{s_{n}\right\}$ and $\left\{t_{k}\right\}$ are monotonically increasing. Thus, they converge if and only if they ore bounded. So, to prove thu, it suffices to show that:
Cling: $3 s u\}$ is bounded \Longleftrightarrow 化ul is bounded.
For $n<2^{k}$

$$
\begin{aligned}
s_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
& \leq a_{1}+(\underbrace{a_{2}+a_{3}}) \cdots+a_{n}+\cdots+(\underbrace{\frac{a}{2^{k}}+\cdots+a_{2^{k+1}}-1}) \\
& \leq a_{1}+\underbrace{2 a_{2}}+\cdots+\underbrace{2^{k} a_{2^{k}}}=t_{k}
\end{aligned}
$$

Similarity, if $n>2^{k}$ then

$$
\begin{aligned}
S_{n} & =a_{1}+\cdots+a_{2^{k}}+\cdots+a_{n} \\
& \geqslant a_{1}+\cdots+a_{2^{k}} \\
& =a_{1}+a_{2}+(\underbrace{\left(a_{3}+a_{4}\right.})+\cdots+(\underbrace{a_{2^{k-1}+1}}+\cdots+a_{2^{k}}) \\
& \geqslant \frac{1}{2} a_{1}+a_{2}+2 a_{4}+\cdots+2^{k-1} a_{2^{k}} \\
& =\frac{1}{2} t_{k}
\end{aligned}
$$

So it follows that $S_{n} \geqslant \frac{1}{2} t_{k}$. Altogether

$$
n<2^{k} \Rightarrow s_{n} \leq t_{k} ; \quad n>2^{k} \Rightarrow 2 s_{n} \geqslant t_{k}
$$

This proves the Claim that $\left\{s_{n}\right\}$ is bounded if and only if $\left\{t_{k}\right\}$ is bounded.
Application: "p-series"
Tum: $\sum \frac{1}{n^{p}}$ converges if $p>1$
diverges if $p \leq 1$
Pf: If $p \leq 0$, then $\sum \frac{1}{n^{r}}$ divespeo by the " $n^{\text {th }}$ term test". If $p>0$, then we may apply the previous the, because

$$
\frac{1}{n^{p}} \geqslant \frac{1}{(n+1)^{p}} \geqslant \frac{1}{(n+2)^{p}} \geqslant \ldots \geqslant 0 .
$$

Thus, by the Tum above,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text { converges } & \Leftrightarrow \sum_{k=0}^{+\infty} 2^{k} \frac{d}{2^{k p}}=\sum_{k=0}^{+\infty}\left(2^{(1-p)}\right)^{k} \\
& \Leftrightarrow \leftarrow x=2^{1-p} \\
& \sum_{k=0}^{\infty} x^{k} \text { is a } \\
& \Leftrightarrow x=2^{1-p}<1 \quad \text { geometric series }
\end{aligned}
$$

$w / \quad x=2^{1-p}$

Spued of decay and convergence

The longer P is, the $f(x)=\frac{1}{x^{p}}$ \& faster $\frac{1}{n^{p}}$ decoys to 0 .

$$
\begin{aligned}
& \begin{array}{l}
p=1 \text { is the } \\
\text { "boundary" } \\
\text { between } \\
\text { convergence \& } \\
\text { divergence. }
\end{array}\left\{\begin{array}{l}
\sum \frac{1}{n^{p}}<\infty \quad \Longleftrightarrow \gg 1 \\
\sum \frac{1}{n}=+\infty
\end{array} \quad\right. \text { (harmonic series) }
\end{aligned}
$$ divergence.

Q: Can we "modify" the denom. of harmonic series to "mathe it" converge?

$$
\sum_{n=1}^{\infty} \frac{1}{n \ldots ?}
$$

A: It will work if we ansert any (poritive) power of n, but can we add instead something that decays slower?

$$
\begin{aligned}
& \sum_{n=2}^{y_{n}} \\
& \log _{n}:=\ln _{n} \frac{1}{n(\log n)^{p}}
\end{aligned}
$$

is the logarithn By Thm obove w/ powers of 2 : in bose e.

$$
\begin{aligned}
& (\log e=1) \quad a_{n}=\frac{1}{n(\log n)^{p}}, \quad a_{2^{k}}=\frac{1}{2^{k}\left(\log 2^{k}\right)^{p}}=\frac{1}{2^{k}(k \log 2)^{p}} \\
& \sum_{n=2}^{+\infty} \frac{1}{n(\log n)^{p}}<\infty \quad \sum_{k=1}^{+\infty} 2^{k} a_{2^{k}}=\sum_{k=1}^{+\infty} \frac{1}{k^{p}(\log 2)^{p}}<+\infty \\
& \frac{1}{(\log 2)^{p}} \sum_{k=1}^{+\infty} \frac{1}{k^{p}}
\end{aligned}
$$

$$
\Leftrightarrow p>1 \text { (by the } p \text {-series) }
$$

Repeating the same reasoning:

$$
\sum_{n=3}^{+\infty} \frac{1}{n(\log n)(\log \log n)^{p}}<+\infty \Longleftrightarrow p>1 .
$$

Upshot: There is no "natural boundary" on the rates of decay for a_{n} that corresponds to Convergence of $\sum a_{n}$.

