Lecture 14

Limits of Functions
$\left(X, d_{k}\right),\left(Y, d_{y}\right)$ metric spaces, $\quad f: X \longrightarrow Y$
Def: Suppose $E \subset X$ is st. $f(E) \subset Y$ and $p \in X$ is a limit point of E. (Note it might be that $p \notin E$)
We say $\quad \lim _{x \rightarrow p} f(x)=q$ if $q \in Y$ satisfies $\forall \varepsilon>0 \exists \delta>0, \forall x \in E, 0<d_{x}(x, p)<\delta \Rightarrow d_{y}(f(x), q)<\varepsilon$.

Remark: If $\left(x, d_{x}\right)=\left(y, d_{y}\right)=\mathbb{R}$ w/ usual distance $d(a, b)=|b-a|$, then the above coincides with the usual defurition of limits for $f: \mathbb{R} \rightarrow \mathbb{R}$.

Them: $\lim _{x \rightarrow p} f(x)=q \Longleftrightarrow \lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$ for all sequences $\left\{p_{n}\right\}_{n \in N}$ in E s.t. $p_{n} \neq p$ and $p_{n} \rightarrow p$.

Pf: $(\Rightarrow \forall \varepsilon>0, \exists \delta>0$ s.t. for all $x \in E$,

$$
0<d(x, p)<\delta \Rightarrow d(f(x), q)<\varepsilon
$$

Given $\left\{p_{n}\right\}$ seq. in E s.t. $p_{n} \neq p . p_{n} \rightarrow p$, there exists $N \in \mathbb{N}$ s.t. $n \geqslant N$ implies $0<d(p n, p)<\delta$. By the above, $d\left(f\left(p_{n}\right), q\right)<\varepsilon$. That is, $\quad \lim _{n \rightarrow \infty} f\left(p_{n}\right)=q . \quad f\left(p_{n}\right) \longrightarrow q$.
$\left(\Leftrightarrow\right.$ Suppose $\lim _{x \rightarrow p} f(x) \neq q$. Then $\exists \varepsilon>0$, s.t. $\forall \delta>0$, $\exists x \in E$ for which $0<d(x, p)<\delta$ bot $d(f(x), q) \geqslant \varepsilon$.
Let $\delta_{n}=\frac{1}{n}$, then there exists a sequence $\left\{p_{n}\right\}$ in $E, 0<d\left(p_{n}, p\right)<\delta_{n}=\frac{1}{n}$. By hypothesis, $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$. This contradicts $d(f(x), q) \geqslant \varepsilon$ if $x \in E, 0<d(x, p)<\delta_{n}$. So it must be $\lim _{x \rightarrow p} f(x)=q$
Cor: If f has a limit at p, it is unique.
If: Recall (Lecture 8, video 2) that limits of sequences ore unique.

Thu: Suppose $f, g: X \rightarrow \mathbb{R} \quad$ (or \mathbb{C}), P is a bit point of $E \subset X$, and

$$
\lim _{x \rightarrow p} f(x)=A, \quad \lim _{x \rightarrow p} g(x)=B .
$$

Then:
a) $\lim _{x \rightarrow p}(f+g)(x)=A+B$
b) $\lim _{x \rightarrow p}(f \cdot g)(x)=A \cdot B$
c) $\lim _{x \rightarrow p}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$, if $B \neq 0$.

Pl: Recall (Lecture 8, Video 3) that the analogous properties hold for limits of sequences. Thus, the above claims follow by expolying the previous theorem.
Example: $\lim _{x \rightarrow p}(f+g)(x)=A+B$
Know $\lim f(x)=A \xrightarrow{\text { Thu }} \forall\left\{p_{n}\right\}$ in $E_{1} p_{n} \rightarrow p_{n}$,
Know $\lim _{x \rightarrow p} f(x)=A \xlongequal{\Longrightarrow} p_{n} \neq p . \quad f(p u) \rightarrow A$.

$$
\lim _{x \rightarrow p} g(x)=B \stackrel{\text { Thu }}{\Longrightarrow} \begin{aligned}
& \forall\left\{p_{n}\right\} \text { in } E, p_{n} \rightarrow p_{1} \\
& p_{n} \neq p_{1}, \quad g\left(p_{n}\right) \rightarrow B .
\end{aligned}
$$

Use Thy from Lecture 8 dort sequences:

$$
(p+g)\left(p_{n}\right)=f\left(p_{n}\right)+g\left(p_{n}\right) \longrightarrow A+B
$$

i.e. $\left.\forall h_{p}\right\}$ in $E_{1} \quad p_{n} \neq p, \quad p_{n} \rightarrow p . \quad(f+p)\left(p_{n}\right) \rightarrow A+B$

By Tum above: $\lim _{x \rightarrow p}(f+g)(x)=A+B$.
Continuous Functions

$$
f: \underset{U}{X} \longrightarrow Y, \quad p \in E
$$

Def: We say f is continuous at $p \in E$ if $\forall \varepsilon>0$ $\begin{aligned} & \exists \delta>0 \text { s.t. } \\ & \text { for all } x \in E\end{aligned} \quad d_{x}(x, p)<\delta \Rightarrow d_{y}(f(x), f(p))<\varepsilon$.
We say f is continuous on E if it is continuous at all points $p \in E$.
Note: If $p \in E$ is isolated, then any function f is continuous at p. So continuity only imposes restrictions on limit points of E.
Isolated

Limit point $d(p, p, n)<\frac{1}{n}$

Tum: Suppose $p \in E$ is a demit point of E. Then f is continuous at $p \Longleftrightarrow \lim _{x \rightarrow p} f(k)=f(p)$.
P1: Immediate from the above definitions (Exerase).
Thu: Composition of continuous functions is contemvors.

If $f: X \rightarrow Y$ and $g: Y \rightarrow z$ are continuous, then $(g \circ f): X \rightarrow Z$ is also continuous. $\leftarrow\left(\begin{array}{cc}\text { Also point } \\ \text { by } & \text { point.... }\end{array}\right)$
PR: Given $\varepsilon>0$, since g is cont. at $f(p) \in Y$, there exists $\eta>0$ s.t.

$$
d_{y}(y, f(p))<\eta, y \in f(E) \Rightarrow d_{z}(g(y), g(f(p)))<\varepsilon \text {. }
$$

Using the fact that f is continuous at p, there exists $\delta>0$ set.

$$
d_{x}(x, p)<\delta, x \in E \Rightarrow d_{y}(f(x), f(p))<\eta
$$

Thus, $d_{x}(x, p)<\delta, x \in E \Rightarrow d_{z}(g(f(x)), g(f(p)))<\varepsilon$; i.e., $(\rho \circ f)$ is continuous at $p \in X$.

Tum: $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every open set $V \subset Y$

Recall: $f^{-1}(V)=\{x \in X: f(k) \in V\}$.
Pf: If f is cont. on X and $V \subset Y$ open then we wart to show that every $p \in f^{-1}(V)$ is an interior point of $f^{-1}(V)$. Since $p \in f^{-1}(V)$, we have $f(p) \in V$ Because V is open, there exists $\varepsilon>0$ s.l. $y \in V$ for all $d(y, f(p))<\varepsilon$. Since f is cont. at p, there exists $\delta>0$ s.t, if $d_{x}(x, p)<\delta$. then $d_{y}(f(x), f(p))<\varepsilon$. Thus if $d_{x}(x, y)<\delta$, we have $f(x) \in V$, i.e., $x \in f^{-1}(V)$. To prove the converse, suppose $f^{-1}(V) \subset X$ is open for all $V \subset$ open Y. Given $p \in X$, let

$$
V=\left\{y \in Y: d_{y}(y, f(p))<\varepsilon\right\}=B_{\varepsilon}(f(p))
$$

Since $V \subset Y$ is open, it follows that $f^{-1}(V) \subset X$ is open; that is, $\exists \delta>0$ s.t. $x \in f^{-1}(v)$ if $d_{x}(p, x)<\delta$; ie., if $x \in f^{-1}(v)$ and $d_{x}(p, x)<\delta$ then $d_{y}(f(p), f(x))<\varepsilon$.

Continuous functions with values in R or $\left(\mathbb{R}^{n}\left(\mathbb{C}\right.\right.$ or $\left.\mathbb{C}^{n}\right)$.

The: If $f, g: X \rightarrow \mathbb{R}$ (or \mathbb{C}) ore continuous, then $f+g, f . g$, and f / g are also continuous on X.
P\&: At isolated points of X, there's nothing to do. At limit points of X, use the corresponding properties for limits and the characterization of continuity in terms of limits.
Def: If $f: X \rightarrow \mathbb{R}^{n}$, then $f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$, where $f_{i}: X \rightarrow \mathbb{R}$ are called coordinate functions of f.
Tum: $f: X \rightarrow \mathbb{R}^{n}$ is continuous if and only if all of its coordinate functions $f_{i}: X \rightarrow \mathbb{R}, i=1, \ldots, n$

$$
\text { Pl: } \underbrace{\left|f_{i}(x)-f_{i}(y)\right|}_{d\left(f_{i}(x), f_{i}(y)\right)} \leq \underbrace{|f(x)-f(y)|}_{d(f(x), f(y))}=\sqrt{\sum_{i=1}^{n}\left|f_{i}(x)-f_{i}(y)\right|^{2}}
$$

If f is cont., then f_{i} are continuous by the above. Conversely, if $f i$ are conte, then f is cont. by dove.

Con: Examples of continuous functions

$$
f i: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f_{i}(x)=x_{i} \text { "th projection"; } i=1, \ldots, n
$$

are continuous
(since $\left.\left|x_{i}-y_{i}\right| \leqslant|x-y|, \forall i\right)$
Products, sums, etc. will also be continuous. In particular, all polynomids ore continuous.

