

Thun: Suppose
$$f,g: X \longrightarrow R$$
 (or C),
p is a bunit point $g \in E \subset X$, and
 $\lim_{X \to p} f(x) = A$, $\lim_{X \to p} g(x) = B$.
Then:
a) $\lim_{X \to p} (f+g)(x) = A+B$
b) $\lim_{X \to p} (f+g)(x) = A-B$
c) $\lim_{X \to p} (\frac{f}{g})(x) = \frac{A}{B}$, if $B \neq O$.
Pl: fecall (Lecture 8, Video 3) that the analogous
properties hold for limits of sequences.
Thus, the above claims follow by applying the
previous theorem.
Example: $\lim_{X \to p} (f+g)(x) = A+B$
Know $\lim_{X \to p} f(x) = A$ Thun $\forall has in E, pa \rightarrow p$.
Know $\lim_{X \to p} f(x) = A$ Thun $\forall has in E, pa \rightarrow p$.
 $\lim_{X \to p} g(x) = B$ Thun $\forall fpat in E, pa \rightarrow p$.
 $\lim_{X \to p} g(x) = B$ Thun $\forall fpat in E, pa \rightarrow p$.
Use Thus from Lecture 8 about sequences:

$$\begin{aligned} & (trg)(p_n) = f(p_n) + g(p_n) \longrightarrow A+B \\ & \text{i.e. } \forall fp_n \ in E, p_n \neq p, p_n \rightarrow p. \quad (f+g)(p_n) \rightarrow A+B \\ & \text{By This above : } \lim_{x \rightarrow p} (f+g)(x) = A+B. \\ & (antinuous Functions) \\ & f: X \longrightarrow Y, p \in E \\ & E \\ & Def: We say f is (outrinuous of p \in E if $\forall E > 0 \\ & \exists S ? 0 \ s.t. \\ & d(x,p) < S \implies d(f(x), f(p)) < E \\ & \text{for all } x \in E \\ & x \in E \\ & \text{Mere say } f is (outrinuous on E if if is continuous at p \in E. \\ & \text{Note: } If p \in E \ is (obtained, then any function f is continuous at p \in E. \\ & \text{Note: } If p \in E \ is (obtained, then any function f is continuous at p \in E. \\ & \text{Note: } If p \in E \ is (obtained, then any function f is continuous of E. \\ & \text{Isoluted} \\ & (E) & p \\ & B_E(p) \cap E = p \end{aligned}$$$

Continuous functions with values in
$$R \text{ or } (\mathbb{C}^{n}(\mathbb{C} \text{ or } \mathbb{C}))$$

Thus: If $f_{i}g_{i}: X \to i\mathbb{R}$ (or \mathbb{C}) are continuous, then
 $i + g_{i}$, $f_{i}g_{i}$ and $f_{i}g_{i}$ are also continuous on X .
It: At isolated points of X , there's nothing to
do. At limit points of X , use the
corresponding properties for limits and the
fixed fixed for the fixed coordinate functions of f_{i} .
Thus: $f_{i}: X \to \mathbb{R}^{n}$ is continuous if and only if all
of its coordinate functions $f_{i}: X \to i(\mathbb{R}, i=1,...,n)$
 $are continuous.$
P1: $|f_{i}(x) - f_{i}(y)| \leq |f_{i}(x) - f_{i}(y)| = \left(\sum_{n=1}^{n} |f_{i}(x) - f_{i}(y)|^{2}$
 $d(f_{i}(y)f_{i}(y))$ $d(f_{i}(y)f_{i}(y))$
If f_{i} is cont, then f_{i} are cout, then f_{i} cod, by above.
During the above. Conversely, if f_{i} are cout, then f_{i} cod, by above.