MATS20
Lectore 45
10/21/2020
Continuity and compactness
Def: A map
$$f: E \rightarrow (X, d)$$
 is bounded if there
exists $M \in IR$ s.t. $f(E) = f_{X} \in X: x = f(P)$, $P \in E$ satisfies
 $f(E) \subset B_{H}(X)$ for some $K \circ \in X;$
 $I.e_{i}$ $d(f(P), x_{0}) < M$, $\forall P \in E$.
Then $f(X)$ is continuous, and X is compact,
then $f(X)$ is compact.
P1: Let $|Va|$ be an open cover of $f(X)$. By a theorem
from lost lecture (Lecture 14, Video G), the presunged
 $f^{-1}(Va) \subset X$ are open. Now, since X is compact
oud $X \subset \bigcup P^{-1}(Va)$, there exists a finite subcover
 $i.e_{i}$ there exist $\alpha_{1,...,N} = 5t$:
 $X \subset f^{-1}(Va, \cup ..., \cup f^{-1}(Va))$
Since $f(f^{-1}(E)) \subset E$, by the above, we have
 $f(X) \subset Y = f(X) \subset f(f^{-1}(Va, \cup ..., \cup f^{-1}(Va)))$
 $X = Y \qquad C Va_{1} \cup ..., \cup Va_{n}.$

This is a finite subcase of
$$\{k\}$$
 proving that $\{k\}$
is compact.

Recall the Heine-Boral Theorem (Lecture 6, Video 1):

 $E \subset \mathbb{R}^{K}$ is compact $\Longrightarrow E \subset \mathbb{R}^{K}$ is closed and bounded

 $Corr:$ If $f: X \rightarrow \mathbb{R}^{K}$ (uniformer X is compact, then
 $g(X) \subset \mathbb{R}^{K}$ is closed and bounded.

In particular, if $K=1$, we have:

If $f: X \rightarrow \mathbb{R}$ is continuous and X is compact, then
 $\exists p, q \in X$ such that
 $f(p) = \sup_{X \in X} f(k)$ $f(q) = \inf_{X \in X} f(k)$.

 $f(p) = \sup_{X \in X} f(k)$ $f(q) = \inf_{X \in X} f(q)$

 $f(p) = \inf_{X \in X} f(q)$ $f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q)$ $f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q) = \inf_{X \in X} f(q)$

 $f(q) = \inf_{X \in X} f(q)$

$$f_{-1}(f(k)) = K \cdot K \in X$$

is a continuous mop.

Pl: By a result of loot lecture (Lecture 14, Video G),
it suffices to draw that
$$f(V)$$
 is open in Y whenever
 $V \subset X$ is open. Eviden $V \subset X$ open, $V = X \setminus V$ is disided
in the compact metric space X, hence V^{c} is compact.
Now, by Theorem above (Video 1 of today!), $f(V^{c})$ is
compact. Simce $f(V) = f(X) \setminus f(V^{c})$ because f is
imjective, we have that $f(V)$ is the complement of
a closed set, as, $f(V)$ is open, as desired.
Dul: $f: X \to Y$ is uniformly continuous of $V \ge >0$
 $\exists S = 0$ s.t.
 $d(p,q) < S \implies d_{Y}(f(p), f(q)) < E$.
Remark: The above is (stratly) stronger than saying $f: X \to Y$
is continuous: the choice of S must work everywhere
without reference to any point of the domain.
 $f(R) = R \times I$
 $g(R) = R \times I$
 $f(R) = R \times I$
 f

Theorem: If
$$g: X \to Y$$
 is continuous and X is compact,
then $f: X \to Y$ is uniformly continuous
 $g: Griven E>0$, since g is continuous, for each $p\in X$,
 $\exists \not S(p) > 0$ s.l.
"the $g \in X$, $d_X(pq) < \varphi(p) \implies d_y(f(q), f(q)) < \frac{\mathcal{E}}{\mathcal{L}}$
in the works
 $for continuety$ Let $J(p) = \{g \in X : d_X(p,q) < \frac{\varphi(p)}{\mathcal{L}}\}$, note
 $p \in J(p)$, and $J(p)$ is open in X. So
 $\bigcup J(p) = X$, so $\{J(p)\}_{p\in X}$ is an open cover of X.
Since X is compact, there exists a functe subcover:
 $X \subset J(p_1) \cup \dots \cup J(p_n)$ the function
 $for continuity of $g: X \to Y$.
Given $p: g \in X$, $d_X(p,q) < \delta$, we know $\exists n \in N$, $I \leq m \leq n$
 $s.t$, $\gamma \in J(p_n)$, i.e., $d_X(p, p_n) < \frac{1}{2} \not S(p_n)$.$

We also have

$$d_X(q, p_M) \leq d_X(p,q) + d(p,p_M) < \delta + \frac{\phi(p_M)}{2} \leq \phi(p_M)$$

So, by \bigotimes we have
 $d_Y(f(p), p(q)) \leq d_Y(f(q), f(p_M)) + d_Y(f(r_M), f(q))$
 $\bigotimes \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
Muis established multiple continuity of f: X -> Y.
Compactness is necessary on all of the above results:
Suppose $\varepsilon \in \mathbb{R}$ is not compact: ε is unbounded
Heine-Boal ε is not closed.
4. Example of f: ECR -> R continues which is not closed.
• If ε is bounded and not closed: them $\exists x \in \mathbb{R}$.
 $Take f: $\varepsilon \to \mathbb{R}_{f}$ $f(x) = \frac{1}{x - x_{0}}$
f is continuous and unbounded: $f(x) \uparrow r \to \forall x - x_{0}$.$

Continuity and Connectedness
E f A $f(E)$
Theorem: If f:X-Y is continuous and ECX is connected, from f(E) is connected.
PI: By contradiction, suppose $f(E) = AUB$ where
A, BCY are separated. Let G=E()f'(A) and
$H = E \cap f^{-1}(B)$. Then $E = G \cup H$ and $G \neq \phi$, $H \neq \phi$.
Since $A \subset \overline{A}$, we have $G \subset f^{-1}(A) \subset f^{-1}(\overline{A})$.
Since f is continuous, f ⁻¹ (A) is closed. Merapore,
$\overline{G} \subset f^{-1}(\overline{A})$ i.e., $f(\overline{G}) \subset \overline{A}$. We have
P(H) - B and A(IB = Ø (blc A, B ove separated), so
TOUL (Provide of G,H and AL
arrives at the connected, so this cannot hopen. [] E=GUH is connected, so this cannot hopen. []
L=GVH V W