MAT320

Discontinuities:
Discontinuities:
Def: A function f: X -> Y is discontinuous at x.6X if it
is not continuous at x.6X.
Continuous at x. VE>0 38>0 st.

$$0 < d(x_10) < S \Rightarrow d(g(k), g(p)) < E.$$

Not continuous at x: $\exists E > 0 \forall S > 0$
 $0 < d(x_10) < S \Rightarrow d(g(k), g(p)) > E.$ $g(p) > E.$ $g(p) > E.$ $g(p) > E.$
Def: (Lateral limits). Let f: (a,b) \Rightarrow Y be $f(p) > E.$
a function. Then given $p \in (a,b)$,
(fight) limit $f(k) = f(p_+) = g$ $(a + p + b)$
if $f(x_1) \rightarrow g$ for all sequence $f(x_1)$ in (p_1b)
s.t. $x_1 \rightarrow p_+$ Analogously for left limits:
 $\lim_{x \to p_-} g(k) = f(p_-)$
In the picture;
 $\lim_{x \to p_+} g(k) = L_2$, $\lim_{x \to p_-} f(k) = L_4$ $(mathematics)$

-

2) fill - all
(x) =
$$\begin{cases} x & if x \in 0 \\ 0 & if x \notin 0 \end{cases}$$
. continuous at x=0,
 $g(x) = \begin{cases} x & if x \in 0 \\ 0 & if x \notin 0 \end{cases}$. The above discontinuction are
points
The above discontinuction are
of second Kind.
[Remarker: Write details of these clowers using sequences]
(Remarker: Write details of these (2,2)
(Remarker: The XE(2,2) similarly, it is
mountouncedly decreasing if a < x < y < b = f(x) > f(y).
A function f is monotomic of the above.

Then let
$$f: (a,b) \rightarrow R$$
 be monotonically increasing.
Then its lateral lumits exist at all $Re(a,b)$, and
sup $f(t) = \lim_{t \rightarrow \infty} f(t) \leq f(x) \leq \lim_{t \rightarrow \infty} f(t) = \inf_{t \rightarrow \infty} f(t)$
actes
Mereover, if $a < x < y < b$, then
 $\lim_{t \rightarrow \infty} f(t) \leq \lim_{t \rightarrow y-} f(t)$
(An analysis statement holds for manotonically decreasing
functions; e.g., replace $f(x)$ by $-f(x)$ in obtained)
(orroblery: Monotonic functions do not have
discontinuities of the second Wind.
Proof. Since f is monotonic, the set
 $f(t)$; $a < t < x$
is bounded from above, e.g., by $f(x)$. Therefore,
it has a least upper bound:
 $A := \sup_{x \in X} f(t): a < t < x$

Corollorg: The set of discontinuities of a monotonic
function is countable.
Pd: Sime a anomatonic function of only has
discontinuities of forst Kond, we can place
a vational number between the lateral limits
at every discontinuity
$$f(x_{\pm}) = f(x_{\pm}) + \cdots + f(x$$

Given any countable set
$$E \subset \mathbb{R}$$
 (e.g., $E=0$),
one can build a Anomotonic increasing function
f: $\mathbb{R} \to \mathbb{R}$ that is discontinuous at all point of E
but continuous everywhere else:
Say $E = \{x_n : n \in \mathbb{N}\} = \{x_1, x_2, x_3, \dots\}$
Let $\{c_n\}$ be a seq. of predive real numbers s.t.
 $\sum_{i=1}^{10} c_n \leq a_i$, e_{g_i} , $c_n = \frac{1}{N^2}$. Define
 $n=1$
 $f(\mathbb{K}) = \sum_{i=1}^{10} c_n$
 $\{n: x_n < x\}$
Clearly $f(\mathbb{K})$ is monot. increasing, and discont. at
 $every x_n$:
 $\lim_{t \to x_{n+1}} f(t) - \lim_{t \to x_{n-1}} f(t) = c_n$
 $\operatorname{discont.}$ (even locally constant) at every $x \neq E$.

Infinite limits & limits at infinity

$$\overline{R} = R \cup \{ \pm \infty \} \quad \text{extanded val line}$$

$$\underline{Del}: \forall C \in \mathbb{R}, \quad \text{the unbounded interval } (C_1 + \infty) \quad \text{is}$$
a meighterhood of $+\infty$, and $(-\infty, c)$ is a
neighterhood of $-\infty$.

$$\underbrace{extends or eacher definition -\infty}_{C} \quad \underbrace{c}_{C} \quad \forall \infty$$
of limits to random fan

$$Def: \text{Let } f: E \subset \mathbb{R} \rightarrow \mathbb{R} \quad \text{be a function. We say}$$

$$\underbrace{\text{lim}}_{t \to \infty} f(t) = A$$

$$\underbrace{\text{there is a meighterhood } V \text{ of } \kappa \text{ such that } V \cap E \neq \emptyset$$
and $f(t) \in U$ whenever $t \in (V \cap E) \setminus \{x\}$.
With the above definition, one can vigorously deal
with limits of infinity $(x = \pm \infty)$ and/or infinite

$$\underbrace{\text{limits}}_{t \to \infty} \frac{t^2}{1 + t^2} = 1, \quad \lim_{x \to -\infty} e^{x} = 0, \dots$$

$$\frac{\text{Mm}:}{\text{Let}} \quad \{i, g: E \in \mathbb{R} \rightarrow \mathbb{R} \text{ and } suppose}$$

$$\lim_{t \to \infty} f(t) = A, \quad \lim_{t \to \infty} g(t) = B.$$
where $x, A, B \in \mathbb{R}$. Then
$$(i) \quad \lim_{t \to \infty} f(t) = A' \quad \text{then} \quad A' = A \quad (unique new)$$

$$(i) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$

$$(iii) \quad \lim_{t \to \infty} (ftg)(t) = A + B$$