Discontinuities:
Def: A function $f: X \rightarrow Y$ is discontinuous at $x \in X$ if it is mot continuous at $x \in X$.

Continuous at $x: \forall \varepsilon>0 \exists \delta>0$ s.t.

$$
0<d(x, p)<\delta \Longrightarrow d(f(x), f(p))<\varepsilon .
$$

Not continuous at $x: \quad \exists \varepsilon>0 \quad \forall \delta>0$

$$
\begin{aligned}
& -\varepsilon>0 \\
& 0<d(x, p)<\delta \Longrightarrow d(f(x), f(p)) \geqslant \varepsilon .
\end{aligned}
$$

Def: (Lateral limits). Let $f:(a, b) \rightarrow Y$ be
 a function. Then given $p \in(a, b)$,
$\binom{$ Right }{ limit }

$$
\lim _{x \rightarrow p_{+}} f(x)=f\left(p_{+}\right)=q
$$

if $f\left(x_{n}\right) \rightarrow q$ for all sequences $\left\{x_{n}\right\}$ in (p, b) s.t. $x_{n} \longrightarrow p$. Andogausly for left limits:

$$
\lim _{x \rightarrow p_{-}} f(x)=f\left(p_{-}\right)
$$

In the picture;

$$
\lim _{x \rightarrow p^{+}} f(x)=L_{2}, \lim _{x \rightarrow p-} f(x)=L_{1}
$$

Recall: $\lim _{x \rightarrow p} f(x)$ exists if and only if both bateval limits exist and

$$
\lim _{x \rightarrow p^{+}} f(x)=\lim _{x \rightarrow p^{-}} f(x)
$$

Discontinuities of first and second kind
Def: We say f has a discontinuity of first Kind at $p \in(a, b)$ if f is discontinuous at p but the lateral limits $\lim _{x \rightarrow p_{+}} f(x)$ and $\lim _{x \rightarrow p_{-}} f(x)$ exist. If f is discontinuous at p, and (at lest one f) the lateral limits does not exist then we say the discontinuity is of second kind.

Examples:
1)

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow[0,1] \\
& f(x)=\left\{\begin{array}{lll}
1 & \text { is } & x \in \mathbb{Q} \\
0 & \text { if } & x \notin \mathbb{Q}
\end{array}\right.
\end{aligned}
$$

Since \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ are both dense in \mathbb{R}

$$
\begin{gathered}
\left(\begin{array}{l}
\mathbb{R} \backslash \mathbb{1} \\
(1, \\
p
\end{array}\right)
\end{gathered}
$$

thus function $f(x)$ is discontinuous at all $p \in R$.
Since none of the lateral limits exist at any $p \in \mathbb{R}$, there discontinuities are of second kind.
2) $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=\left\{\begin{array}{lll}
x & \text { if } & x \in \mathbb{Q} \\
0 & \text { if } & x \notin \mathbb{Q}
\end{array}\right.
$$

- continuous ant $x=0$, discontinuous at all other points
- The glove discontinuities are of second Kind.
Exercise: Write details of these clovims using sequences!
(Recanter: $\forall p \in \mathbb{R}, \exists\left\{x_{n}\right\},\left\{y_{n}\right\}$ sequences $w / x_{u} \rightarrow p$, $y_{n} \rightarrow p$ and $\left.x_{n} \in \mathbb{Q}, \forall n \in \mathbb{N}, \quad y_{n} \in \mathbb{R} \backslash \mathbb{Q}, \quad \forall_{n} \in \mathbb{N}\right)$

3) $f(x)=\left\{\begin{array}{lll}x & \text { if } & x \in[0,1] \\ x+1 & \text { if } & x \in[1,2]\end{array}\right.$

This function is continuous on $[0,2] \backslash\{1\}$ and discontinuous at $p=1$. This discontinuity is of first kind:

$$
\lim _{x \rightarrow 1_{+}} f(x)=2, \quad \lim _{x \rightarrow 1_{-}} f(x)=1
$$

Definition: We say $f:(a, b) \rightarrow \mathbb{R}$ is monotonically increasing if $a<x<y<b \Rightarrow f(x) \leq f(y)$; similarly, it is monotonically decreasing if $a<x<y<b \Rightarrow f(x) \geqslant f(y)$. A function f is monotonic of it is either of the above.

Them. Let $f_{i}(a, b) \rightarrow \mathbb{R}$ be monotonically increasing. Then its lateral limits exist at all $x \in(a, b)$, ad

$$
\sup _{a<t<x} f(t)=\lim _{t \rightarrow x_{-}} f(t) \leq f(x) \leq \lim _{t \rightarrow x_{+}} f(t)=\inf _{x<t<b} f(t)
$$

Moreover, of $a<x<y<b$, then

$$
\lim _{t \rightarrow x_{+}} f(t) \leq \lim _{t \rightarrow y_{-}} f(t)
$$

(An andogous statement holds for monotonically decreasing functions; e.e., replace $f(x)$ by $-f(x)$ in stetenenct.
Covollory. Monotonic functions do not have discontinuities of the second lind.
Prase. Since f is monotonic, the set

$$
\{f(t) ; a<t<x\}
$$

is bounded from above, e.g., by $f(x)$. Therefore, it has a least upper bound.

$$
A:=\sup \{f(t): a<t<x\}=\sup _{a<t<x} f(t)
$$

Claim: $\lim _{t \rightarrow x_{-}} f(t)=A$
Given $\varepsilon>0$, since A is the lest upper bound, $\exists \delta>0$ s.t. $a<x-\delta<x$
 and $\quad A-\varepsilon<f(x-\delta) \leq A$. Since f is monotonic,

$$
f(x-\delta) \leq f(t) \leq A \quad \text { for all } x-\delta<t<x
$$

Combining the above:

$$
A-\varepsilon<f(k-\delta) \leq f(t) \leq A
$$

$$
x-\delta<t<x \Longrightarrow|f(t)-A|<\varepsilon
$$

$$
-\varepsilon<f(x)-A \leq 0<\varepsilon
$$

$$
|f(t)-A|<\varepsilon \text {. }
$$

The above means precisely that $\lim _{t \rightarrow x_{-}} f(t)=A$.
Similarly, one uses the exact same procedure to show $\lim _{t \rightarrow x_{+}} f(t)=\inf _{x<t<b} f(t)$. Finally, given $a<x<y<b$, from the ebove $\quad \lim _{t \rightarrow x_{+}} f(t)=\inf _{x<t<b} f(t)=\inf _{x<t<y}^{11} f(t)$ Andogarily, $\lim _{t \rightarrow y_{-}} f(t)=\operatorname{spp}_{a<t<y} f(t)=\sup _{x<t<y} f(t)$ proving the lost part of the statement.

Covallery: The set of discontinuities of a monotonic function is countable.
Pl: Since a monotonic function f only has discontinuities of first kind, we can place a rational number between the lateral lanits at every discontinuity

$$
f\left(x_{ \pm}\right)=\lim _{t \rightarrow x_{ \pm}} f(t)
$$

Since f is monotonic, there rational numbers are all distinct. Therefore, the set of discontinuities of f is in 1-1 correspondence with a subset of Q; hence is countable.
Remark: Despite being countable, the discontinuities of monotonic functions might accumolete.

Given any countable set $E \subset \mathbb{R}(e . g, E=Q)$, one can build a monotonic increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is discontinuous at all paint of E but continuous everywhere ike:
Sen $E=\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
Let $\left\langle c_{n}\right\}$ be a seq. of positive real numbers st. $\sum_{n=1}^{+\infty} c_{n}<\infty ;$ eg., $c_{n}=\frac{1}{n^{2}}$. Define

$$
f(x)=\sum_{\left\{n: x_{n}<x\right\}} c_{n}
$$

Clearly $f(x)$ is monot. increasing, and discount. at every x_{n} :

$$
\lim _{t \rightarrow x_{n_{+}}} f(t)-\lim _{t \rightarrow x_{n}-} f(t)=c_{n}
$$

and cont. (even bally constant) at every $x \notin E$.

Infinite limits \& limits at infinity
$\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}$ extended real line
Def: $\forall c \in \mathbb{R}$, the unbounded interval $\left(c_{1}+\infty\right)$ is a neighborhood of $+\infty$, and $(-\infty, c)$ is a neighborhood of $-\infty$.
extends ar earlier de function
Def: Let $f: E \subset \mathbb{R} \rightarrow \mathbb{R}$ be a function. We say

$$
\lim _{t \rightarrow x} f(t)=A
$$

where $A, x \in \overline{\mathbb{R}}$, if for every neighberkard U of A there is a neighborhood V of x such that $V \cap E \neq \varnothing$ and $f(t) \in U$ whenever $t \in(V \cap E) \backslash\{x\}$.
With the above defection, one con rigorously deal with limits at infinity $(x= \pm \infty)$ gnd/or infinite limits $(A= \pm \infty)$. It also, of course, matches our lordlier def. for real numbers
Examples: $\lim _{t \rightarrow+\infty} \frac{t^{2}}{1+t^{2}}=1, \quad \lim _{x \rightarrow-\infty} e^{x}=0, \ldots$

Thm: Let $f, g: E \subset \mathbb{R} \rightarrow \mathbb{R}$ and suppose

$$
\lim _{t \rightarrow x} f(t)=A, \quad \lim _{t \rightarrow x} g(t)=B .
$$

where $x, A, B \in \overline{\mathbb{R}}$. Then
(i) $\lim _{t \rightarrow x} f(t)=A^{\prime}$ then $A^{\prime}=A \quad$ (uniqueness)
(ii) $\lim _{t \rightarrow x}(f+g)(t)=A+B$
(iii) $\lim _{t \rightarrow x}(f \cdot g)(t)=A \cdot B$
(iv) $\lim _{t \rightarrow x}\left(\frac{f}{g}\right)(t)=\frac{A}{B}$
provided the right-hond side of the above is well-de fined.

$$
\text { Recall: } \left.\begin{array}{c}
+\infty-\infty \\
-\infty+\infty \\
0 \cdot \pm \infty \\
\frac{\infty}{\infty} \\
\frac{A}{0}
\end{array}\right\}
$$

The follow ha栄 well-dof.

$$
+\infty+\infty=+\infty
$$

$$
-\infty-\infty=-\infty
$$

$$
\text { c. }+\infty=+\infty
$$

$$
\text { if } c>0
$$

