Quick recap of Lecture 1:
$(s,<)$ ordered set, $E \subset S$ bounded from above:

$$
\begin{array}{r}
\exists \beta \in S \\
\forall x \in E, \\
x
\end{array}
$$

sup $E=$ least upper bound for $E \longleftarrow$ I IP $S=Q$, then sup Andologasly, if E is bounded from below:

$$
\begin{aligned}
& \exists \alpha \in S \quad \text { inf } E=\text { largest lower } \\
& \forall x \in E \quad \text { bound for } E \text {. } \\
& \alpha \leq x \quad \text { ! It so inf's might not exit! }
\end{aligned}
$$

Example: Verify that $\mathbb{Z}_{2}=\{0,1\}$ is a field with:

+	0	1
0	0	1
1	1	0

The real numbers:

\cdot	0	1
0	0	0
1	0	1

Recall (from lect subset bounded from dove has a supremom (nate: get existence of inf fagot frow the i?

Thy: There exists a unique ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as subfield.
Idea of proof: (1) Construction of \mathbb{R} : Dedekind ants

$\mathbb{R}:=$ collection of all such cuts. $A, B \subset Q$
(2) Uniqueness: if $\mathbb{R}_{1}, \mathbb{R}_{2}$ are fields satisfying
the above (ordered, w/ l.u.b. property), then $\quad \exists \phi: \mathbb{R}_{1} \rightarrow \mathbb{R}_{2}$ an isomorphism of fields, ie., ϕ preserves $t, 0$.
Archimedean property: $\forall x, y \in \mathbb{R}, x>0, \exists n \in \mathbb{N}$ such that $n x>y$.
Pi: Given $x \in \mathbb{R}, x>0$, let $A=\{n x: n \in \mathbb{N}\}$. If the conclusion was fore, then $\forall n \in \mathbb{N}, n x \leq y$; which means that A is bounded from above. By the l.u.b property, $\exists \alpha=\sup A \in \mathbb{R}$. Since $x>0, \quad \alpha-x<\alpha$, so $\alpha-x$ is not an upper bound for A. Therefore $\exists m \in \mathbb{N}$ s.t. $\alpha-x<m x$. This means that $\alpha<\underbrace{(m+1}_{\in \mathbb{N}}) x \in A$. This contradiction finishes the proof.

Theorem: \mathbb{Q} is "dense" in \mathbb{R}; ie, $\forall x, y \in \mathbb{R}, x<y$

$$
\exists r \in \mathbb{Q}, \quad x<r<y .
$$

Pf: Since $x<y$, we have $y-x>0$. By Archimedean prop, $\exists n \in \mathbb{N}$ s.t. $n(y-x)>1$. Again by Archimedean prop., $\exists m_{1}, m_{2} \in \mathbb{N}$ s.t. $m_{1}>n x$ and $m_{2}>-n x$. Then

$$
-m_{2}<n x<m_{1}
$$

Therefore $\exists m \in \mathbb{Z}$, s.t.

$$
m-1 \leqslant n x<m
$$

Putting the above together:

$$
n x<m \leq 1+n x<n y
$$

Divide by $n: \quad x<\frac{m}{n}<y . \quad(n \in \mathbb{N}, m \in \mathbb{Z})$.
So we found $r=\frac{m}{n} \in \mathbb{Q}$ s.t. $x<r<y$.
Existence of $n^{\text {th }}$ root of any 0 votive! real number, $\forall n \in \mathbb{N}$.
Lemma: If $0<a<b$, then $b^{n}-a^{n}<(b-a) n b^{n-1}$ for all $n \in \mathbb{N}$. This can be proven by induction on n.
Pf: Recall $b^{n}-a^{n} \xlongequal{=}(b-a)\left(b^{n-1}+b^{n-2} a+\ldots+a^{n-1}\right)$.

$$
0<a<b \Rightarrow a^{j} b^{n-1-j}<b^{n-1}, \quad \forall j=1, \ldots, n-1
$$

Thus: $b^{n}-a^{n}<(b-a)(\underbrace{b^{n-1}+b^{n-1}+\cdots+b^{n-1}}_{n})=(b-a) n b^{n-1}$.

Thu: For all $x \in \mathbb{R}, x>0$, and $n \in \mathbb{N}$ these exists a unique $y \in \mathbb{R}$, sit. $y>0$ and $y^{n}=x$ (Notation: $y=\sqrt[n]{x}=x^{1 / n}$)
Pf: (Uniqueness). If $y_{1}, y_{2} \in \mathbb{R}$ satisfied $y_{1}^{n}=x=y_{2}^{n}$, then $y_{1}=y_{2}$. If not: $y_{1}<y_{2}$ or $y_{1}>y_{2}$.

$$
\begin{array}{cl}
\stackrel{\|}{n} & \stackrel{\Downarrow}{y_{1}^{n}<y_{2}^{n}} \\
\text { (contradiction) } & y_{1}^{n}>y_{2}^{n} \\
\text { (contradiction) }
\end{array}
$$

(Existence). To define $y \in \mathbb{R}$ we shall use the l.u.b. property of \mathbb{R}

Let $E=\left\{t \in \mathbb{R} ; t>0\right.$ and $\left.t^{n}<x\right\}$
(1) $E \neq \phi$: Set $t=\frac{x}{1+x} \in \mathbb{R}$, note $0<t<1$. Also, $t^{n}<t<x$. Thus, $\quad t=\frac{x}{1+x} \in E$.
(2) E is bounded from above: If $t>1+x$, then $t^{n}>t>x$ so $t \notin E$. Thus $\beta=1+x$ is an β upper bound for E.
By the l.u.b-propecty, $\exists y:=\sup E \in \mathbb{R}$.
Now we show $y^{n}=x$. If not, then either

$$
y^{n}<x \quad \text { or } \quad y^{n}>x
$$

If $y^{u}<x$; then choose $h \in \mathbb{R}$ s.t. $0<h \leq 1$ and

$$
h \leqslant \frac{x-y^{n}}{n(y+1)^{n-1}} ; \text { e.g., } h=\min \left\{1, \frac{x-y^{n}}{n(y+1)^{n-1}}\right\}
$$

Set $a=y, b=y+h$ in the Lemma: $(0<a<b)$

$$
\begin{aligned}
& b^{n}-a^{n}<(b-a) n b^{n-1} \\
&(y+h)^{n}-y^{n}<(y+h-y) \cdot n \cdot(y+h)^{n-1}=h n(y+h)^{n-1} \\
& \leq h n(y+1)^{n-1} \leq x-y^{n} \\
&(h \leqslant 1) \leqslant
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow \quad \underbrace{(y+h)^{n}}_{\epsilon E}<x, \quad & y+h>y=\sup E . \\
& \text { contradicts } y=\sup E . \\
& \text { (in particular, } y \text { is an upper) } \\
& \text { bound for } E
\end{array}
$$

If $y^{n}>x$: Set $k=\frac{y^{n}-x}{n y^{n-1}}$, note $0<k<y$.
If $t \geqslant y-k_{1}$ then by the Lemma:

$$
y^{n}-t^{n} \stackrel{{ }_{n}^{n}}{y^{n}}-(\underbrace{(y-k)^{n}}_{a}<\underbrace{n k y^{n-1}}_{n(b-a)^{n-1}}=y^{n}-x .
$$

Thus $t^{n}>x$; in particular, $t \notin E$.

Therefore $y-k$ is an upper bound for E.
This contradicts the fact that $y=\operatorname{sop} E$ is the least upper bound for E.
Hence $y^{n}=x$; completing the proof.
Extensions of real numbers:
(1) "Extended" real line: $\overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty,-\infty\}$.

Define $-\infty<x<+\infty, \forall x \in \mathbb{R}$, with the "intuitive" definitions for arithmetic operations with $\pm \infty$:

$$
x+\infty=+\infty, \quad x-\infty=-\infty, \quad \frac{x}{ \pm \infty}=0
$$

(1) \bar{R} is not a field.
(2) Complex numbers $\mathbb{C}=\mathbb{R} \oplus \mathbb{R}=\mathbb{R}^{2}$

$$
\begin{aligned}
& x=(a, b), \quad y=(c, d) \in \mathbb{C} \quad a, b, c, d \in \mathbb{R} \\
& x+y:=(a+c, b+d), \quad x-y:=(a c-b d, a d+b c)
\end{aligned}
$$

It can be shown that \mathbb{C} is a field.

However, \mathbb{C} is not ordered. (Hint: $\begin{aligned} &i:=(0,1) \in \mathbb{C}) \\ & i^{2}=(-1,0)\end{aligned}$
(3) Galley. Dickson construction

$$
\begin{aligned}
& i:=(0,1) \in \mathbb{C}) \\
& i^{2}=(-1,0)
\end{aligned}
$$

$(=-1 \in \mathbb{R})$

$$
\mathbb{C}=\mathbb{R} \oplus \mathbb{R}, \quad \begin{array}{|c}
H \\
H
\end{array}=\mathbb{C} \oplus \mathbb{C}, \quad \underset{a}{\mathbb{Q}}=\boldsymbol{C}=H \oplus H
$$

"Quaternions" (not a pied!)
(not a field!)

