Basic Notions:
Def: A, B are sets, $f: A \rightarrow B$ function is
(1) infective (or " $1-1$) if $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$
(2) Surjective (or "onto") if $\forall b \in B, \exists x \in A$ s.t. $b=f(x)$
(3) bijective if it is injective and surjective. $\leftarrow \frac{f \text { finns ar are, }}{=} f^{-1}$.

Def: A and B have the same cardinality if $\exists f: A \rightarrow B$ a bijective mop ("bijection").
interitively, this means
Notation: $\# A=\# B$,
$|A|=|B|$ have the same number A and B of elements.

Finite / Countable / Uncountable:
Notation: For all $n \in \mathbb{N}$, let $J_{n}:=\{1, \ldots, n\}$.

$$
J_{1}=\{1\}
$$

$$
\mathbb{N}=\{1,2,3, \ldots\}=\bigcup_{n \in \mathbb{N}} J_{n}
$$

Def: A set A is
(1) finite if $\exists n \in \mathbb{N}$ and $f: A \rightarrow J_{n}$ a bijection.

$$
(\# A=n)
$$

(2) infinite if A is not finite.
(3) countable if $\exists f: A \rightarrow \mathbb{N}$ bijection.
(4) uncountable if it is not finite nor countable

Examples: \mathbb{N} is countable and infinite.
III $=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ is also countable and infinite
$R_{\text {exercise }}$ (note $\left.N \subset \mathbb{Z}\right) . ~ R$
$\binom{A \subset B}{\# A \leq \# B}$.
$\exists f: \mathbb{Z} \rightarrow \mathbb{N}$ bijection

$$
\begin{aligned}
& g: \mathbb{N} \rightarrow \underbrace{\mathbb{N},}_{\substack{\text { starthere }}} \\
& \cdots,-3,-2,-1,0,1,2,3, \ldots \\
& 1,2,3,4,5,6,7, \ldots \\
& g(1)=-\frac{1-1}{2}=0 \\
& g(2)=\frac{2}{2}=1 \\
& g d \uparrow f d \uparrow d \uparrow \quad \downarrow \uparrow d \uparrow d \uparrow d \uparrow \\
& g(3)=-\frac{3-1}{2}=-1 \\
& g(4)=\frac{4}{2}=2 \ldots(f(g(n))=n, \quad g(f(x))=x) \\
& \text { Note that } g \text { is } \\
& \text { a bijection. } \\
& \text { Let } f \text { be the } \\
& \text { inverse of } g \text {; } \\
& \text { which is olio } \\
& \text { a bijection. } \\
& (f(g(n))=n, \quad g(f(x))=x)
\end{aligned}
$$

Alternative definition of infinite set:
Even though $\mathbb{N} \subseteq \mathbb{Z}$, they have the same cardinality: $\exists f: \mathbb{Z} \rightarrow \mathbb{N}$ a bijection.
Thu: A set A is infinite if and only if there exists a proper subset $E \notin A$ and a bijection $f: A \rightarrow E$.
Pl: Suppose $\exists E \nsubseteq A$ and $f: A \rightarrow E$ a bijection. If $\exists n \in \mathbb{N}$ and $\varphi: A \rightarrow J_{n}$ a bijection, let $n_{0} \in \mathbb{N}$ be the smallest such n and $\varphi: A \rightarrow J_{n_{0}}$. Consider $\left.\varphi\right|_{E}: E \rightarrow J_{n_{0}}$. Then $\exists m<n_{0}$ such that $\left.\operatorname{Im}_{m} \varphi\right|_{E}=\varphi(E) \cong J_{m}$. Then $(\varphi \circ f): A \rightarrow J_{m}$

would be a bijection from A to $J_{m}, \quad n<n_{0}$, contradicting minimality of n_{0}. Thus, A is infinite. Converse is an exercise.

- Hint: Take a countable subset $E^{\prime} C A$ and let $E^{\prime}=\left\{x_{1}, x_{2}, \ldots\right\}$. Then, consider the mop $f: E^{\prime} \rightarrow E^{\prime}$ given by $f\left(x_{i}\right)=x_{i+1}, \quad \forall i \in \mathbb{N}$. Conclude that $E^{\prime} \cong\left\{x_{2}, x_{3}, \ldots\right\}$ $=E^{\prime} \backslash\left\{x_{1}\right\}$.

$$
\binom{\text { car extend } f: E^{\prime} \rightarrow E^{\prime}\left\{x_{1}\right\} \text { to }}{f: A \rightarrow \underbrace{A \backslash\left\{x_{1}\right\}}_{=: E} \text { by the identity. }}
$$

Sequence:
Def: A sequence in the set A is a function $f: N \rightarrow A$
Notation: $a_{n}=f(n)$

The: Every infinite subset of a countable set A is also countable.
Pf: Since A is countable, let $f: A \rightarrow \mathbb{N}$ be a bijection Write $x_{n} \in A$ for the element of A mapped to $n \in \mathbb{N}$ by the bijection f.

$$
A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}
$$

Let ECA be an infinite subset. Define a sequence $\left\{n_{k}\right\} \subset \mathbb{N}$ as follows:
Let n_{1} be the smallest number sit. $X_{n_{1}} \in E$
after choosing $n_{1}, n_{2}, \ldots, n_{k-1}$, lat
n_{k} be the smallest number $\geqslant n_{k-1}$ such that $x_{n_{k}} \in E$. Since E is infinite, this defines an infinite sequence $\left\{n_{k}\right\}$; note $E=\left\{x_{n_{1}}, x_{n_{2}}, \ldots, x_{\left.n_{k},--\right\}}\right\}$ Let $g: E \rightarrow \mathbb{N}$ be s.t. $g\left(x_{n_{k}}\right)=k$. Observe that g is a bijection. Therefore E is countable.

Move properties of countable sets:
Thu: (1) The countable union of countable sets is countable
(2) The (finite) cartesian product of countable sets is countable.
Pf: (1) Let $E_{1}, E_{2}, \ldots, E_{n}, \ldots$ be countable sets for each $n \in \mathbb{N}$. We need to show that

$$
E:=\bigcup_{n \in \mathbb{N}} E_{n}=E_{1} \cup E_{2} \cup E_{3} \cup \ldots=\bigcup_{n=1}^{\infty} E_{n}
$$ is countable.

Since each E_{n} is countable, $\exists f_{n}: E_{n} \rightarrow \mathbb{N} b_{i j}$.

$$
\left.\begin{array}{ll}
E_{1}=\left\{x_{11}, x_{12},\right. & x_{13}, \ldots
\end{array}\right\} \quad\binom{x_{i j} \in E_{i}}{f_{i}\left(x_{i j}\right)=j}
$$

We can enumerate the elements of E as follows:
$E: x_{11}, x_{21}, x_{12}, x_{31}, x_{22}, x_{13}, x_{41}, x_{32}, x_{23}, x_{14}, \ldots$
$\mathbb{N}:(1),(2)(3)$
(3)
(3)
This shows that E is countable.
(2) Now, we would like to show that $E_{1} \times E_{2} \times E_{3} \times \ldots \times E_{k}$ are countable for all $k \in N$ $=\prod_{i=1}^{k} E_{i}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): x_{i} \in E_{i}, \quad i=1, \ldots, k\right\}$.

Using the bijections $f_{n}: E_{n} \rightarrow \mathbb{N}$, it suffices to show that $\mathbb{N}^{k}=\underbrace{\mathbb{N} \times N_{x} \ldots \times \mathbb{N}}_{k-f d d \text { cartesian }}$ is countable. product of naturals

$$
=\left\{\left(n_{1}, n_{2}, \ldots, n_{k}\right): n_{i} \in \mathbb{N}, i=1,-\cdots k\right\}
$$

For $k=1$ this is clear since $N^{1}=N$.
Suppose (by induction) that \mathbb{N}^{k-1} is countable.
Since $\mathbb{N}^{k}=\mathbb{N}^{k-1} \times \mathbb{N}$, the elements of \mathbb{N}^{k} are

$$
\begin{aligned}
& (\underbrace{\left(n_{1}, \ldots, n_{k-1}\right.}, n_{k}) \in \mathbb{N}^{k} \quad \text { Thus: } \mathbb{N}^{k}=\bigcup_{n \in \mathbb{N}} \mathbb{N}^{k-1} \\
& \left(n_{1}, \ldots, n_{k-1}\right) \in \mathbb{N}_{\substack{k-1}}^{\uparrow} \begin{array}{l}
\text { is a countable union } \\
\text { countable, by induction. } \\
\text { of countable sets. This }
\end{array} \\
& \text { is countable by (1). }
\end{aligned}
$$

Application:
Cor: \mathbb{Q} is countable.
Pf: There is a "copy" of Q inside $\mathbb{Z} \times \mathbb{N}$

$$
\mathbb{Q} \ni \frac{p}{q} \longleftrightarrow p \in \mathbb{Z}, q \in \mathbb{N}
$$

Since \mathbb{Z}, \mathbb{N} ore countable, so is $\mathbb{Z} \times \mathbb{N}$, and hence Q is also countable. $\square\binom{$ There is a surgicetion }{$\mathbb{Z} \times \mathbb{N} \rightarrow Q}$
Example: $\{0,1\}^{N}:=\{f: N \rightarrow\{0,1\}\}$ is uncountable.

$$
\pi\left(\begin{array}{l}
\text { the set of sequencer } \\
\text { of } 0 \text { 's }
\end{array} \text { and } 1\right. \text { 's. }
$$

PI: ("Cantor diagonal"):
Let $E \subset\{0,1\}^{\mathbb{N}}$ be a countable subset; say

$$
E=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}, \ldots\right\}
$$

$$
\begin{aligned}
& \begin{array}{l}
s_{2}: 11010 \\
s_{3}: 1110010
\end{array}
\end{aligned}
$$

Consider a new element $s \in\{0,1\}^{N}$ built as follows:
s: $\frac{1}{1} \underbrace{0}_{2} \frac{1}{3} \quad \frac{\ldots}{4} \longleftarrow$ $n^{\text {th }}$ element of s is 1 if $n^{\text {the }}$ ileac of S_{n} is 0 and Clearly $S \notin E$. 0 if the $n^{\text {th }}$ element of
Thus, every countable subset of $\{0,1\}^{N_{n}^{N}}$ is a proper subset. There fore, $\{0,1\}^{\mathbb{N}}$ is un countable (otherwise, if $\{0,1\}^{N}$ was countable, then $\left.\{0,1\}^{\mathbb{N}} \nsubseteq\{0,1\}^{\mathbb{N}}\right)$

Note: If we represent real number using binary sequences, then the above proves that \mathbb{R} is uncountable. We will give a different proof of this using topology in a later lecture.

