MAT 320

Basic Notions. Def: A, B are sets, f: A -> B function is (1) injective (or "1-") if $\forall x, y \in A$, $x \neq y \implies f(x) \neq f(y)$ (2) <u>Surjective</u> (or "onto") if $\forall b \in B$, $\exists x \in A \text{ s.t. } b = f(\kappa)$ (3) bijective if it is injective and surjective. In this ase, Uel: A and B have the same condinality if $\exists f: A \rightarrow B$ a bijective mop ("bijection"). a bijective mop ("bijection"). Notation: #A = #B, (A|=1B) have the same number of elements.

Lecture 3

9/2/2020

Finite / Countable / Uncountable.
Notation: For all meN, let Jn := {1, ..., m}. J_2 = {1,2}
J_3 = {1,2,3}
N = {1,2,3, ...} = U Jn
Def: A set A is
(1) finite if ENEN and f: A -> Jn a bijection.
(#A = n)
(2) infinite if A is not finite.
(3) Countable if
$$\exists f: A \rightarrow N$$
 bijection.
(4) Uncountable if it is not finite nor countable

N is countable and infinite. Examples . $T = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$ is also Countable and infinite (note NCZ). Lexercise $\begin{pmatrix} A \subset B \\ \# A \leq \# B \end{pmatrix}$ $\exists f: \mathbb{Z} \to \mathbb{N} \text{ bijection}$ $g: \mathbb{N} \to \mathbb{Z}, \quad g(\mathbb{N}) = \begin{cases} \frac{\mathbb{N}}{2}, & \text{if } \mathbb{N} \text{ is even} \\ -\frac{\mathbb{N}-1}{2}, & \text{if } \mathbb{N} \text{ is odd} \end{cases}$ Note that gis a bijection. -- , -3, -2, -1, 0, 1, 2, 3, --. $g(1) = -\frac{1-1}{2} = 0$ Let f be the $g(2) = \frac{2}{2} = 1$ inverse of g which is also 1, 2, 3, 4, 5, 6,7,... $g(3) = -\frac{3-1}{2} = -1$ a béjection $g(4) = \frac{4}{2} = 2$ (f(g(n)) = n, g(f(x)) = x)

Alternative definition of infinite set:
Even though
$$\mathbb{N} \subseteq \mathbb{Z}$$
, they have the same condinations:
 $\exists f:\mathbb{Z} \to \mathbb{N}$ a bijection.
Thim: A set A is infinite if and only if there exists
a proper subset $E \subsetneq A$ and a bijection $f:A \to E$.
 $\mathbb{N}:$ Suppose $\exists E \subsetneq A$ and $f:A \to E$ a bijection. If
 $\exists n \in \mathbb{N}$ and $\psi: A \to \mathbb{J}n$ a bijection, let $M \in \mathbb{N}$
be the smallest such M and $\psi: A \to \mathbb{J}n$.
Consider $\Psi|_E: E \to \mathbb{J}n_0$. Then $\exists m < N_0$ such
that $\operatorname{Im} \Psi|_E = \Psi(E) \cong \mathbb{J}n$. Then $(\Psi \circ f): A \to \mathbb{J}n$.

would be a bijection from A to Jm, m<no, contradicting minimality of Mo. Mus, A is infinite. Converse is an exercise. Hint: Take a countable subset E'CA and let E'= {x1, X2, -...}. Then, consider the mop $f: E' \longrightarrow E'$ given by $f(x_i) = X_{i+1}$, $\forall i \in \mathbb{N}$. Conclude that E' (Xz, X3, ...) $= E' \setminus \{x_1\}.$ (Can extend f: E'-> E'({x1} to) (f: A -> A\{x1} by the identity.)

Sequences:
Def: A sequence in the set A is a function
$$f: \mathbb{N} \rightarrow A$$

Notation: $Q_{N} = f(n)$
 A
 $N = \begin{cases} 1, 2, 3, ... \end{cases}$
 $M = \begin{cases} 1, 2, 3, ... \end{cases}$
Thm: Every infinite subset of a countable set A is also
countable.
Pf: Since A is countable, let $f: A \rightarrow \mathbb{N}$ be a bijection
Write $Kn \in A$ for the element of A mapped
to $N \in \mathbb{N}$ by the bijection f .

$$A = \{X_{k}, X_{2}, X_{3}, \dots\}$$
Let ECA be an infinite subset. Define a
sequence $\{M_{k}\} \subset \mathbb{N}$ as follows:
Let M_{k} be the smallest number sit. $X_{N_{k}} \in \mathbb{E}$
i
ofter choosing $M_{3}, M_{2}, \dots, M_{K-4}$, let
 M_{k} be the smallest number $\gg M_{K-4}$ such that
 $X_{N_{k}} \in \mathbb{E}$. Since \mathbb{E} is infinite, this defines an
infinite sequence $\{M_{k}\}$, note $\mathbb{E} = \{X_{M_{3}}, X_{M_{2}}, \dots, X_{M_{K}}, \dots\}$
Let $g: \mathbb{E} \to \mathbb{N}$ be sit. $g(X_{M_{k}}) = K$. Observe that
 g is a bijection. Therefore \mathbb{E} is countable. \mathbb{O}

More properties of countable sets:
Thm: (1) The countable union of countable sets is
countable
(R) The (finite) cartesian product of countable
sets is countable.
PL: (1) Let Es, Ez, ..., En, ... be countable sets
for each NEIN. We need to show that

$$E = \bigcup_{M \in \mathbb{N}} En = E_1 \cup E_2 \cup E_3 \cup ... = \bigcup_{M=1}^{\infty} En$$

is countable.
Since each En is countable, $\exists fn: En \rightarrow N bij$.

 $E_{1} = \{ X_{14}, X_{42}, X_{43}, \dots \}$ $\begin{pmatrix} X_{ij} \in E_i \\ f_i(X_{ij}) = j \end{pmatrix}$ $E_2 = \{ X_{21}, X_{22}, X_{23}, \dots \}$ $E_3 = \{ X_{34}, X_{32}, X_{33}, \dots \}$ We can enumerate the elements of E as follows: (2) Now, we would like to show that EIXEZXE3X...XEK are countable for all KEN $= \prod_{i=1}^{k} E_{i} = \{(x_{1}, x_{2}, \dots, x_{k}) : X_{i} \in E_{i}, i = 1, \dots, k\}.$

Using the bijections
$$fn: En - N$$
, it suffices to
show that $N^{K} = N \times N \times \dots \times N$ is countable
 $K - fild$ cortessian
product of methods
 $= \{(M_{1}, N_{2}, \dots, N_{K}) : M_{i} \in N, i=1, ..., K\}$
For $K = 1$ this is clear since $N^{d} = N$.
Suppose (by induction) that N^{K-1} is countable.
Since $N^{K} = N^{K-d} \times N$, the elements of N^{K} are
 $(M_{3}, \dots, N_{K-d}, N_{K}) \in N^{K}$ Thus: $N^{K} = \bigcup N^{K-1}$
 $(M_{3}, \dots, M_{K-d}, N_{K}) \in N^{K}$ is a countable summer
 $(N_{3}, \dots, N_{K-d}) \in N^{K-1} \in N$ is a countable summer
 $(N_{3}, \dots, N_{K-d}) \in N^{K-1} \in N$ is a countable summer
 $(M_{3}, \dots, M_{K-d}) \in N^{K-1} \in N$ is countable sets. This
is countable, by induction.

S₁:
$$0 0 1 01 1 0 ...$$

S₂: $1 1 1 1 0 1 0 ...$
S₃: $1 1 0 1 0 0 0 ...$
Consider a new element $S \in \{0,1\}^N$ built as follows:
S: $1 0 1 0 0 0 ...$
Consider a new element $S \in \{0,1\}^N$ built as follows:
S: $1 0 1 0 0 0 ...$
S: $1 0 1 0 0 0 ...$
Chearly $S \notin E$.
Thus, every countable subset of $30,15^N$ is a proper subset.
Thus, $every$ countable subset of $30,15^N$ is a proper subset.
Therefore, $\{0,15\}^N$ is uncountable (otherwise, if $\{0,15\}^N$ was countable. Then $\{0,15\}^N \notin \{0,1\}^N$.

Note: If we represent real numbers using binary Sequences, then the above proves that IR is a different groof of uncountable. We will give later lecture. this using topology in a