MAT 320
Metric spaces
Del: A metric space is a set X with a distance function
d: X x X
$$\longrightarrow \mathbb{R}$$
, i.e., a function s.t.
(1) $d(p,q) > 0$ if $p \neq q$, $d(p,q) = 0 \iff p = q$.
(2) $d(p,q) = d(q,p)$, $\forall p,q \in X$
(3) $d(p,q) \leq d(p,r) + d(r,q)$, $\forall p,q,r \in X$
"triangle inequality".
Example: X = $\mathbb{R}^n = f(x_1, ..., x_n)$: Xi $\in \mathbb{R}^3$
 $d(p,q) = || p - q|| = \sqrt{\sum_{i=1}^n (p_i - q_i)^n}$ is a metric space
("Euclidean space").

Example: X is any set:
$$d: X \times X \rightarrow R$$

 $d(p;q) = \begin{cases} 2 & \text{if } p \neq q \\ 1 & \text{if } p \neq q \end{cases}$
Check that this "0-1" distance is a dist. function.
PR: (1) $d(p;q) = 1 > 0$ if $p \neq q$,
 $d(p;q) = 0 \iff p = q$
(2) $d(p;q) = d(q;p)$ because $p = q$ and $p \neq q$.
 $(3) \quad d(p;q) = d(q;p)$ because $p = q$ and $p \neq q$.
 $p = q : d(p;q) = 0$, $d(p;r) + d(r;q) = 2 d(p;r) = \begin{cases} 0 & p \neq r \\ 2 & p \neq q \end{cases}$
 $p \neq q : d(p;q) = 1$, $d(p;r) + d(r;q) = 2 d(p;r) = \begin{cases} 0 & p \neq r \\ 2 & p \neq q \end{cases}$
 $p \neq q : d(p;q) = 1$, $d(p;r) + d(r;q) = \begin{cases} 1 & \text{if } r = p \neq q \\ 1 & \text{if } r \neq q \neq q \end{cases}$
 $q \neq q = r$
 $(2, if r \neq p \neq q = r)$
 $(2, if r \neq p \neq q = r)$
 $(3, if r \neq p \neq q = r)$
 $(3, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq q = r)$
 $(4, if r \neq p \neq q = r)$
 $(4, if r \neq q = r)$
 $(4, if r \neq q = r)$
 $(4, if r \neq q = r)$
 $(4, if q \neq q = r)$
 $(4, if r \neq q = r)$
 $(4, if q \neq q = r)$
 $(4, if r \neq q =$

$$\frac{\text{Def}(\text{Metric ball}). \text{ The }(\underline{\text{metric}}) \quad \underline{\text{ball}} \quad ef \text{ radius } r > 0}$$

$$\frac{\text{Centered at } p \in X \text{ is } \text{ the set:}}{B_r(p) = \{x \in X : d(p, x) < r\}.}$$

$$\frac{\text{Ex: In } \text{ the Euclidean space }(\mathbb{R}^n, d):$$

$$B_r(p) = \{x \in \mathbb{R}^n, \|x - p\| < r\}$$

$$If(X,d) \text{ is equipped with } \text{ the } 0-1$$

$$\frac{B_r(p)}{B_r(p)} = \{p\}, \text{ if } r \leq 1$$

$$B_r(p) = X, \quad \forall r > 1$$

Def: In a metric space (X,d) we say that: · a Preighborhood of pex is a subset UCX such that pell and tgel, Br>0, s.t. Br(q) CU. . pex is a limit point of ECX if <u>every</u> neighborhood of p contains some elemant $q \in E$, $q \neq p$. is a limit point of U. · peE is an isolated point of ECX if p is not a (X,d)limit point of E. · ECX is closed if every limit point of E belongs to E. E= Eo U lea, ez, ez}

only if its complement
$$E^{c} = X \setminus E$$
 is closed.

Thus, G is open.
(b)
$$\left(\bigcap_{\alpha \in A} F_{\alpha} \right)^{c} = \bigcup_{\alpha \in A} (F_{\alpha})^{c}$$
 by (a) this is open.
Therefore $\bigcap_{\alpha \in A} F_{\alpha}$ is closed.
Acca
(c) let $H = \bigcap_{i=1}^{n} G_{i}$, xcH. Since $x \in G_{i}$, $\forall i=1, ..., n$.
Hure exist $v_{i} > 0$ s.t. $B_{r_{i}}(x) \subset G_{i}$, $\forall i=1, ..., n$.
Let $v_{i} > 0$ s.t. $B_{r_{i}}(x) \subset G_{i}$, $\forall i=1, ..., n$.
Let $v_{i} = 0$ s.t. $B_{r_{i}}(x) \subset G_{i}$, $\forall i=1, ..., n$.
Let $v_{i} = 0$. Note $B_{r_{i}}(x) \subset B_{r_{i}}(x) \subset G_{i}$,
 $1 \le i \le n$
So $B_{r}(x) \subset H$. Hence x is an interior point of H,
proving that H is open.

(a)
$$\begin{pmatrix} 0 \\ i=1 \end{pmatrix}^{c} = \bigwedge_{i=1}^{n} (F_{i})^{c}$$
 is open by (c), thus
 $i=1$ is closed.
Chemark: The condition that A is funite cannot
be relaxed in (c) and (d) of Thum above:
 $e.g., \quad G_{n}:= \begin{pmatrix} -\frac{1}{n}, \frac{1}{n} \end{pmatrix} \xrightarrow{c} \frac{G_{1}}{2} = \frac{G_{2}}{2}$
 $\bigcap_{n=N}^{n} G_{n}:= \begin{pmatrix} -\frac{1}{n}, \frac{1}{n} \end{pmatrix} \xrightarrow{c} \frac{G_{1}}{2} = \frac{G_{2}}{2}$
 $\bigcap_{n\in N}^{n} G_{n}:= \begin{pmatrix} -1, \frac{1}{n}, \frac{1}{n} \end{pmatrix} \xrightarrow{f} \frac{f(f_{1}+f_{2})f_{1}}{-1+\frac{1}{2}\circ\frac{1}{2}} = \frac{1+\frac{1}{2}}{2} = \frac{1+\frac{1}{n}}{-1+\frac{1}{n}} = \frac{1+\frac{1}{n}$

Def: The lowere E of a subset E in a metric
space is
$$\overline{E} = \overline{E} \cup \overline{E}'$$
 where \overline{E}' is the set of
limit points of E.
This implies that \overline{E} is
the subset closed set
(b) $\overline{E} = \overline{E}$ if and only if \overline{E} is closed
(c) $\overline{E} \subset \overline{F}$ for every closed set \overline{F} with $\overline{E} \subset \overline{F}$
PI: (a) If $\overline{p} \in X$, $\overline{p} \notin \overline{E}$ then $\overline{p} \notin \overline{E}$ and p is not a
limit point of \overline{E} . This $\overline{\exists} \cup \overline{\exists} p$ reighted. s.t. $\overline{\cup} \subset \overline{E}$.
Thus \overline{E}^c is open, therefore \overline{E} is closed.
(b) $\overline{H} \in \overline{E} = \overline{E}$, then \overline{E} is closed by (a). Conversely, if \overline{E} is