MAT 320

$$\frac{\text{Compact Sets}}{\text{Let } (X,d) \text{ be a metric space}}$$
Let (X,d) be a metric space.

$$\frac{\text{Del}: \text{ An open cover of } E \subset X \text{ is a collection } G_{X} \text{ of open } G_{X} \text{ of open } G_{X} \text{ of } (M, X) = (\mathbb{R}^{2}, d)$$

$$\underbrace{WB_{1}(p)}_{\text{PE}} \supset E$$

$$\underbrace{WB_{1}(p)}_{\text{PE}} \supset E$$

$$\underbrace{Del: \text{ A rubset } K \subset X \text{ is compact } \text{ if given any open cover } G_{X} \text{ of } K, \text{ there exists a functe subcover, say } G_{X}(r, -r), G_{X}(n, s.t. K \subset G_{X}, U = \dots, UG_{X}(n, =: \bigcup_{i=1}^{n} G_{X}(r, -r))$$

Since
$$K \subset Y$$
, we have that $K \subset V_{d_1} \cup \dots \cup V_{d_N}$. Thus
 K is compact in Y .
Conversely, suppose K is compact in Y . So let $|G_{\alpha}|$ be an
open cover of K in X . Let $V_{\alpha} := G_{\alpha} \cap Y$. Since $K \subset Y$,
 $|Y_{\alpha}|$ is an open cover of K in Y . Thus, since K is compact
in Y , $K \subset V_{\alpha_1} \cup \dots \cup V_{\alpha_n}$ for some $\alpha_1, \dots, \alpha_n$. Then
 $K \subset V_{\alpha_1} \cup \dots \cup V_{\alpha_n} = (G_{\alpha_1} \cup \dots \cup G_{\alpha_n}) \cap Y \subset G_{\alpha_1} \cup \dots \cup G_{\alpha_n}$.
Therefore K is compact in X .
 \mathbb{Z}
Nerver By the Theorem above, it makes serve to
talk about "compact metric spaces" since compactness
is an intrinsic property, unlike being "open" or "closed."

Them: Compact subsets of metric spaces are closed.
PL: Let KCX be compact, we would like to show that

$$K^{c} = X \setminus K$$
 is open.
Let $p \in K^{c}$, if $q \in K$, let $V_{q} \ni p$ and
 $W_{q} \ni q$ be open neighborhoods s.t.
 $V_{q} \cap W_{q} = \phi$. Note $\{W_{q}\}$ is an open cover of K. Since
 K is compact, there give finitely mony $q \in K$ s.t.
 $K \subset W_{q} \cup \ldots \cup W_{q} = :W$. Let $V := V_{q} \cap \ldots \cap V_{q} \cap$. Since
 Y_{uis} is an intersection of finitely mony open subsets,
 V is open in X. Since $V_{q} \cap W_{q} = \phi$, $Y_{q} \in K$, vie have $V \subset K^{c}$.
Thus $p \in K^{c}$ is an interior point of K^{c} . Therefore K^{c}
is open, i.e., K is dosed.

Mm: Closed subsets of compact sets are compact.
Phi: Let FCKCX, F closed in X,
K compact. Let {Va} be an open cover
of F. Note that

$$KC (UVa) \cup F^{C}$$
 (4c F is closed in X)
Simce K is compact, there exists a finite subcover:
 $KC Va_{4} \cup - \cup Van \cup F^{C}$ appear in the subcover.
Removing F^C if Necessary, we have FC Va₄ U... UVan.
Thus, F is compact.
 $Cor: If Fis closed and K is compact, then FNK is compad.
H: FNK is closed (since F and K are closed), and
FNK CK hence compact by the theorem above.$

Thus: If {Ka} is a collection of compact subsets of a metric
space X such that the intersection of every finite
subcollection of {Ka} is non-empty, then
$$\bigcap Ka$$
 is non-empty.
It Fix K1 a member of $\{K\alpha\}$; set $G_{\alpha} = K_{\alpha}^{c}$. Suppose
that no point in K1 belongs to every K_{α} . i.e., type K1,
 $\exists \alpha \ st. \ p \in K_{\alpha}^{c} = G_{\alpha}$. Since K_{α} are compact, they are closed,
and hence G_{α} are open. So $\{G_{\alpha}\}$ is an open cover of
 K_{1} . Since K_{1} is compact, there is a finite subcover:
 $K_{1} \subset G_{\alpha} \cup \cdots \cup G_{\alpha} = K_{\alpha}^{c} \cup \cdots \cup K_{\alpha}^{c} = (K_{\alpha} \cap \cdots \cap K_{\alpha})^{c}$
Thus: $K_{1} \cap K_{\alpha_{1}} \cap \cdots \cap K_{\alpha_{n}} = \emptyset$, which contradicts the
hypothesis. Therefore $\exists p \in K_{1}$ which belongs to all other K_{α} ,
i.e., $\{p\} \subset \bigcap K_{\alpha}$.

Moreover, for all M, MEN
an
$$\leq$$
 ant \leq bnt \leq min $\frac{1}{2}$ by $\frac{1}{2}$ by
i.e., the N, ben is on upper bound for E. Since xis
the least upper bound of E, $x \leq bn$, the ℓN . Therefore
an $\leq x \leq bn$, the ℓN , i.e., $x \in \prod n \neq \beta$.
Note: The above proof does not use the fact (proven later) that In ore compaded
Then: If E is an infinite subset of a compact set K, then
E has a limit point in K.
 $Pl:$ Suppose no point of K is a
 $\lim_{k \to \infty} X \leq \log \beta$, then $\forall q \in K, \exists \forall q \ni q$ open neighbol. such
that $\forall q$ contains of most one point of E (namely q itself)
Note that, since E is infinite, no finite subcollection
 $\partial_t \{\forall q\}$ can cover E, and, in porticular, no finite

subcover of
$$\{V_{q}\}$$
 can cover $K \supset E$. This contradicts
the assumption that K is compact.
Example: $E = \{\frac{1}{M} : M \in N\}$ infinite
 $K = [0, 1]$ compact. If this interval of K is a limit point of E in K .
 $K = 1$
 $K = 2$
 $K = 1$
 $K = 1$
 $K = 2$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 3$
 $K = 3$
 $K = 3$
 $K = 1$
 $K = 2$
 $K = 3$
 $K = 3$

Then K-cells are compact
[In porticular, closed intervals
$$[a,b] \subset \mathbb{R}$$
 are compact).
Pl: Let $I = [a_1,b_1] \times \ldots \times [a_K,b_K]$ be a K-cell. Let
 $S = \sqrt{\sum_{i=1}^{K} (b_i - a_i)^2}$. Note that $a_{i} \neq a_{i} \neq a_{i} \neq b_{i}$.
 $\forall x, y \in I$, $d(x, y) \leq S$.
Suppose, by contradiction, that I is not compact.
Then there exists an open cover $\{G_{ik}\}$ of I which
admits no finite subcover. Let $C_{j} = \frac{a_{j} + b_{j}}{2}$.
The K-cells determined by the
intervals $[a_{j}, c_{j}]$ and $[c_{j}, b_{j}]$ subdivide I into 2^{K}

K-cells; Say
$$Q_i$$
, whose union is I. At least
one of Q_i cannot be compact, say Q_i is not
compact. Continue as before and subdivide $I_i = Q_i$
into 2^{κ} sub- κ -cells determined by midpoints.
We obtain a sequence In, with $I_0 = I$, $I_i = Q_i$,
s.t.

(a)
$$I \supset I_1 \supset I_2 \supset \dots \supset I_n \supset \dots$$

(b) I_n is not covered by a subcover of $\{G_{\alpha}\}$.
(c) $J_1 \quad X_{,\gamma} \in I_n$, then $d(X,Y) \leq \frac{S}{2^n}$.
By (a), $\bigcap_{N \in N} I_n \neq \phi$, say $X \in \bigcap_{N \in N} I_n$
For some α , $X \in G_{\alpha}$. Since G_{α} is open

$$\exists r > 0$$
 s.t. $B_r(x) \subset G_x$. In other words, ty s.h
 $d(x,y) \subset r$, $y \in G_x$. So choosing n lorge enough, we
have $\frac{S}{2^n} \subset v$ (by the Archimedea property of R),
then $I_n \subset G_x$; by (c). This contradicts (b),
and finishes the proof that I is compact. \square