Heine-Borel Theorem: The following ore equivalent for a subset $E \subset \mathbb{R}^{k}$ of Euclidean space:
(a) E is closed and bounded
(b) E is compact
(c) Every infinite subset SCE has a limit point in E.

Pf: $(a) \Rightarrow(b)$ If E is closed and bounded, then these exists a k-call $I \subset \mathbb{R}^{k}$ such that $E \subset I$.
From lest lecture: I is compact.
Since E is closed in I, and closed subsets
of a compact set ore compact (Lecture 5, vide 4), $1 a_{1}$ it plows that E is compact.
$(b) \Rightarrow$ (c) Video 8 of Lecture 5 .
$(c) \Rightarrow$ (a) If E satisfies (c) but is not bounded; then
$\exists x_{n} \in E, \quad \forall n \in \mathbb{N}$ sit.

$$
\left\|x_{n}\right\|>n
$$

Let $S=\left\{x_{n} \in E: \quad n \in \mathbb{N}\right\}$.

Note that S is infinite since, otherwise, $\left\{\left\|x_{n}\right\|: n \in N\{\right.$ would be finite (which it is not). By (C), there is a limit paint of S in E. But S does not have any limit points in \mathbb{R}^{k} (nor in E), which gives the dexiced contradiction.
Suppose that E is not closed, then $\exists x_{\infty} \in \mathbb{R}^{k}$ a limit point of E with $x_{\infty} \notin E$. Let $x_{n} \in E$ be st.

$$
\left\|x_{n}-x_{\infty}\right\|<\frac{1}{n} \text {. Let } S=\left\{x_{n} \in E: n \in N\right\} \text {. }
$$

Note that S is infinite (otherwise $\left\|x_{n}-x_{\infty}\right\|$ would be a positive constant),

Clearly x_{∞} is a limit point of S; and S has no other limit point: if $y \in \mathbb{R}^{k}, \quad y \neq x_{\infty}$, was a limit point of S, then (triangle in ape)

$$
\begin{aligned}
\left\|x_{n}-y\right\| & \geqslant\left\|x_{\infty}-y\right\|-\left\|x_{n}-x_{\infty}\right\| \\
& >\left\|x_{\infty}-y\right\|-\frac{1}{n} \geqslant \frac{1}{2}\left\|x_{\infty}-y\right\|
\end{aligned}
$$

contradicting the assumption that ${ }^{\text {F }}$ for $n \in \mathbb{N}$ suff. y is a limit point of S. large.
This contradicts (c), b/c SCE is an infinite subset without a limit point in E. Therefore, E must also be closed.

Recall: $P \subset(X, d)$ is a perfect set if P is closed and every point of P is a limit point of P.
Ex:

is not porfoct
closed $c \in E$ is not a limit point of E.
Theorem: If $P \subset \mathbb{R}^{k}$ is perfect, $P \neq \phi$, then P is uncountable.
Pl: Since P has limit points, it is infinite. Suppose that P is countable; and cabal its elements as x_{1}, x_{2}, \ldots, ire.,

$$
P=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}=\left\{x_{n}: n \in \mathbb{N}\right\}
$$

Construct a sequence of neighborhoods $\left\{V_{n}\right\}$ as follows: $V_{1} \ni x_{1}$ is any veighbd. of x_{1}.

By induction, suppose we constructed V_{1}, \ldots, V_{n} in such way that $V_{n} \cap P \neq \phi$. Since $\forall p \in P, p$ ir a demit point of P, there exists a neighborhood K_{n+1} st.
(i) $\overline{V_{n+1}} \subset V_{n}$
(ii) $\quad x_{n} \notin \overline{V_{n+1}}$
(iii) $\quad V_{n+1} \cap P \neq \phi$.

Let $K_{n}=\bar{V}_{n} \cap P$. Since \bar{V}_{n} is closed and bounded, by the Heine-Borel Theorem, \bar{V}_{n} is com pact. Since $x_{n} \notin K_{n+1}$, no point of P lies $\bigcap_{n \in N} K_{n}$. Since $K_{n} \subset P$, $\bigcap_{n \in \mathbb{N}} K_{n}=\phi$. But each K_{n} is nonempty, and $K_{m} \supset K_{n+1}$. this contradicts the fact that intersections of nested seq. of compact sets ore non empty (Video 6 of Lecture 5).

Cor: Any dosed interval $[a, b] \subset \mathbb{R}$ is uncountable.
Cor: The set of real numbers \mathbb{R} is uncountable.

The Cantor Set

Continue by induction, constructing a Messed sequence En st::
(i) $E_{0} \supset E_{1} \supset E_{2} \supset \ldots \supset E_{n} \supset \ldots$
(ii) E_{n} is the union of 2^{n} closed intervals, each of lough $\frac{1}{3^{n}}$.

Def: The Cantor sot is $P=\bigcap_{n \in \mathbb{N}} E_{n}$.
Note that P is the intersection of nested nonempty coup pact sets, hence $P \neq \phi$. (Video 6 of Lecture 5). clearly, P is bounded and closed, hence P is compact.
Prop: The Cantor set P is perfect.
P\&: Clearly P is closed, so it is enough to show that any $x \in P$ is a limit point of P. Let S be any neighbor of $x \in P$. By choosing $n \in \mathbb{N}$ sufficiently large, so that one of the intervals In that enppiak belong $\underset{x}{I_{n}}$
constitute E_{n} satisfies $I_{n} \subset S$, we have that its endpoints (which are elements of P) belong to S.

Remark: Note that P does not contain any interval (α, β) : n_{0} interval of the form
has any point in common with $P_{\text {; }}$; for any $k, m \in \mathbb{N}$; bot $I_{k, m}$ is inside (α, β) for some $k \in \mathbb{N}$ if m is chosen sufficiently large: $\frac{1}{3^{m}}<\frac{\beta-\alpha}{6}$.
Exercise: Compute the total length of intervals that are removed from $E_{0}=[0,1]$ in the construction of the Cater set P.

In step n of the construction, we remove 2^{n} intervals of length $1 / 3^{n+1}$:
$n=0$: remove 1 interval of length $1 / 3$

$$
\begin{aligned}
& n=1:-1-1 / 3^{2} \\
& n=2: \quad 1 / 2^{2} \\
& \begin{array}{c}
i \\
m
\end{array} 2^{n} \quad 1 / 3^{n+1} \\
& \binom{\text { Total length }}{\text { remove d }}=\sum_{n=0}^{+\infty} 2^{n} \cdot \frac{1}{3^{n+1}}=\frac{1}{3} \sum_{n=0}^{+\infty}\left(\frac{2}{3}\right)^{n}=\frac{1}{3}\left(\frac{1}{1-2 / 3}\right) \\
& \text { \# of intervals } \\
& \text { removed }
\end{aligned}
$$

So, remarkably, we began with $E_{0}=[0,1]$, which hos length 1, removed intervals whose total length is also 1, and the resulting set P is perfect (in porticulor, P is uncountable).
Connected sets:
Def: Two subsets A and B of a metric space X are said to be separated if both $\bar{A} \cap B$ and $A \cap \bar{B}$ are empty. A set $E \subset X$ is connected if E cannot be written as $E=A \cup B$ where A and B are separated and nonempty.
 $E=A \cup B$

Rms : Separated \Rightarrow disjoint

$$
\begin{array}{ll}
A=[0,1] & A \cap B=\phi \\
B=(1,2) & \text { (disjoint) } \\
\bar{B}=[1,2] & \phi \neq A \cap \bar{B}=\{1\}
\end{array}
$$

(not separated!)
Thm: A subset $E \subset \mathbb{R}$ is connected if and only if E is an interval: " $\forall x, y \in E$, if z satisfies $x<z<y$, then $z \in E . "$
(Note: The negation of the above property vices:) $\exists x, y \in E$ st. $x<z<y$ bot $z \notin E$.
PR: If E is not an interval, then $\exists x, y \in E$, $x<z<y, z \notin E$. Then we can write $E=A_{z} \cup B_{z}$,
where

$$
\begin{aligned}
& A_{z}=E \cap(-\infty, z) \\
& B_{z}=E \cap(z,+\infty)
\end{aligned}
$$

Note that $x \in A_{z}, y \in B_{z}$ so $A_{z} \neq \phi, B_{z} \neq \phi$; moreover $A_{z} \subset(-\infty, z)$ and $B_{z} \subset\left(z_{1}+\infty\right)$, so $\overline{A_{z}} \cap B_{z}=\phi$ and $A_{z} \cap \overline{B_{z}}=\phi$. Thus A_{z} and B_{z} are separated, hence E is not connected.
Conversely, suppose E is not connected: then $E=A \cup B$, with $A \neq \phi, B \neq \phi$ separated. Pick $x \in A, y \in B, \omega / \sigma$ loss of generdity, say $x<y$. Define

$$
z=\sup (A \cap[x, y])
$$

Note that $z \in \bar{A}$, hence $z \notin B$. In particular $x \leq z<y$.

If $z \notin A$, then $x<z<y$ and $z \notin E$. (so E is n_{0} t an interval.) If $z \in A$, then $z \notin \bar{B}$, so there exists z_{1} with $z<z_{1}<y$ and $z_{1} \notin B$. Then $x<z_{1}<y$, and $z_{1} \notin E$. (80, again, E is not an interval).
\square

