MAT.320 9/16/2020 Lecture 6 Heine-Borel Theorem: The following one equivalent for a subset EC IRK of Euclideon space: (a) E is closed and bounded (b) E is compact (c) Every infinite subset SCE has a limit point In E. $\mathfrak{P}_{\mathbf{f}}: (a) \Rightarrow (b)$ If E is clased and bounded, then these exists a K-cell ICRK such that ECI. From last lecture: I is compact. Since E is closed in I, and closed subsets an in it is of a compact set are compact (Lecture 5, video 4), a, b, it follows that E is compact. (b) => (c) Video & of Lecture S. $(C) \Longrightarrow (\alpha)$ If E satisfies (C) but is not bounded, then

EXAMPLE, THEN S.T.
IXANEE, THEN S.T.
IXANEE, THEN S.T.
IXANE STREE: MENS.
Note that S is infinite sume, otherwise,
I XANE: MENS would be finite (which it is moth, By (C),
there is a limit point of S in E. But S does
Not have any limit points in IRK (nor in E), which
gives the desired contradiction.
Suppose that E is met closed. then
$$\exists x_{\infty} \in \mathbb{R}^{K}$$
 a limit
puint of E with $x_{\infty} \notin E$. Let $x_{n} \in E$ be s.t.
IXAN - Xoll < I. Let $S = \{x_{n} \in E: n \in \mathbb{N}\}$.
Note that S is infinite (otherwise
IXAN - Xoll would be a positive constant)
B₁(x_{\infty})

clearly too is a limit point of S. and S has no
other limit point: if
$$y \in \mathbb{R}^{k}$$
, $y \neq x_{\infty}$, was a dimit
point of S, then (triangle ineq)
 $\|xn - y\| \ge \|x_{\infty} - y\| - \|xn - x_{\infty}\|$
 $> \|xn - y\| \ge \|x_{\infty} - y\| - \|xn - x_{\infty}\|$
 $> \|x_{\infty} - y\| - \frac{1}{N} \ge \frac{1}{2} \|x_{\infty} - y\|$
contradicting the assumption that for new suff.
 y is a limit point of S.
This contradicts (c), $b|c$ ScE is an infinite subset
without a limit point in E. Therefore, E must also
be closed.

By induction, suppose we constructed Va, ..., Vn in such
way that Vn NP ≠ \$\$. Since
$$\forall p \in P$$
, p is a down't point
of P, there exists a neighborhood there st.
(i) $\forall n+1 \subset \forall n$
(ii) $\forall n \notin \forall n+1$
(iii) $\forall n \notin \forall n+1$
(ivi) $\forall n+1 \land P \neq $$.Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Let $\forall n = \forall n \land P \neq $$.$
Main $\forall \forall n \neq $$.$
 $\land \forall n = $$.$ But each $\forall n \land $$ nonempty, and $\forall n > \forall n \neq $$.$
 $\forall \forall n \land $$ intersections of nested seq.$
 $\forall wis contradicts the fact that intersections of nested seq.$$$

constitute En satisfies In C S, we have that
its endpoints (which are elements of P) balance to S.
Remark: Note that P does not contain any
interval
$$(\alpha, \beta)$$
: No interval of the form
 $I_{km} := \left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) = \frac{1}{m}$ the construction
has any point in common with P; for any k, m EN.
but I_{km} is inside $(\alpha_i\beta)$ for some KEN if M is chosen
sufficiently large: $\frac{1}{3^m} < \frac{\beta-\alpha}{6}$.
Exercise: (compute the total clength of intervals that are removed
from Eo=[0,1] in the construction of the Garbor set P.

Rink: Separated => disjoint
$$A = [0,1]$$
 $A \cap B = \phi$
 $B = (1,2)$ (disjoint)
 $B = [1,2]$ $\phi \neq A \cap B = \{1\}$
(not separated!)
Thm: A subset ECIR is connected if and only if
E is an interval: " $\forall x, y \in E$, if 2 satisfies
 $X < 2 < y$, then $Z \in E$."
(Note: The negation of the above property vicab.:
 $Z < 2 < y$, then $Z \in E$."
(Note: The negation of the above property vicab.:
 $Z = [a,b]$ or
 $[a,b]$ or $[a,b]$.
PL: If E is not an interval, then $\exists x, y \in E$,
 $X < Z < y$, $Z \notin E$. Then we can write $E = A_Z \cup B_Z$,

where
$$A_z = E \cap (-\infty, z)$$

 $B_z = E \cap (z, +\infty)$
Note that $x \in A_z$, $y \in B_z$ so $A_z \neq \phi$, $B_z \neq \phi$;
moreover $A_z \subset (-\infty, z)$ and $B_z \subset (z, +\infty)$, so
 $\overline{A_z} \cap B_z = \phi$ and $A_z \cap \overline{B_z} = \phi$. Thus A_z and B_z are
separated, hence E is not connected.
Conversely, suppose E is not connected: then $E = A \cup B$,
with $A \neq \phi$, $B \neq \phi$ separated. Pick $x \in A$, $y \in B$, W/σ
loss of generality, say $X < g$. Define E
 $Z = \sup (A \cap [X,g]) \xrightarrow{(X \times Y)}_{A = z \otimes B}$
Note that $z \in \overline{A}$, hence $z \notin B$. In particular $X \leq z < g$.

If Z&A, then X<Z<Y and Z&E. (so E is not an interval.) If ZEA, then Z&B. so there lyists z_1 with $z < z_1 < y$ and $z_1 \notin B$. Then $X < Z_1 < Y$, and $Z_1 \notin E$. (so, again, E is not an interval).