MAT320
Lecture 9
128/2020
Def: A sequence if the propage (X,d) is a
Cauchy sequence if the problem set if M,M ZN,
then
$$d(p_N, p_M) < E$$
.
Using
diam $E = \sup (d(x,y) : x, y \in E)$
Note: A seq. (p_N) is Cauchy if and only if
diam diam (p_N: NZN) = 0.
Note: As we will see shortly, a Cauchy seq. mey or
array not converge (depending on whether the space
it is in has the proparty of deams "unplete").

Thun: a) If
$$\overline{E}$$
 is the closure of \overline{E} , then
diam $\overline{E} = diam \overline{E}$
b) If Kn is a seq. of compact sets in X
s.t. $Kn \supset Kn+1$, $\forall n \in \mathbb{N}$, and if
lim diam $Kn = 0$
then $\bigwedge Kn$ consists of exactly one point.
 $n \in \mathbb{N}$
 \mathbb{P}_{1} : a) Since $E \subset \overline{E}$, it follows that
diam $\overline{E} \leq diam \overline{E}$
(annecsely, fix $\varepsilon > 0$ and $p:q \in \overline{E}$. Since $p:q \in \overline{E}$,
 $\exists p', q' \in \overline{E}$ s.t. $d(p, p') < \varepsilon$ and $d(q;q') < \varepsilon$. Thus:
 $d(p;q) \leq d(p, p') + d(p';q') + d(q',q)$

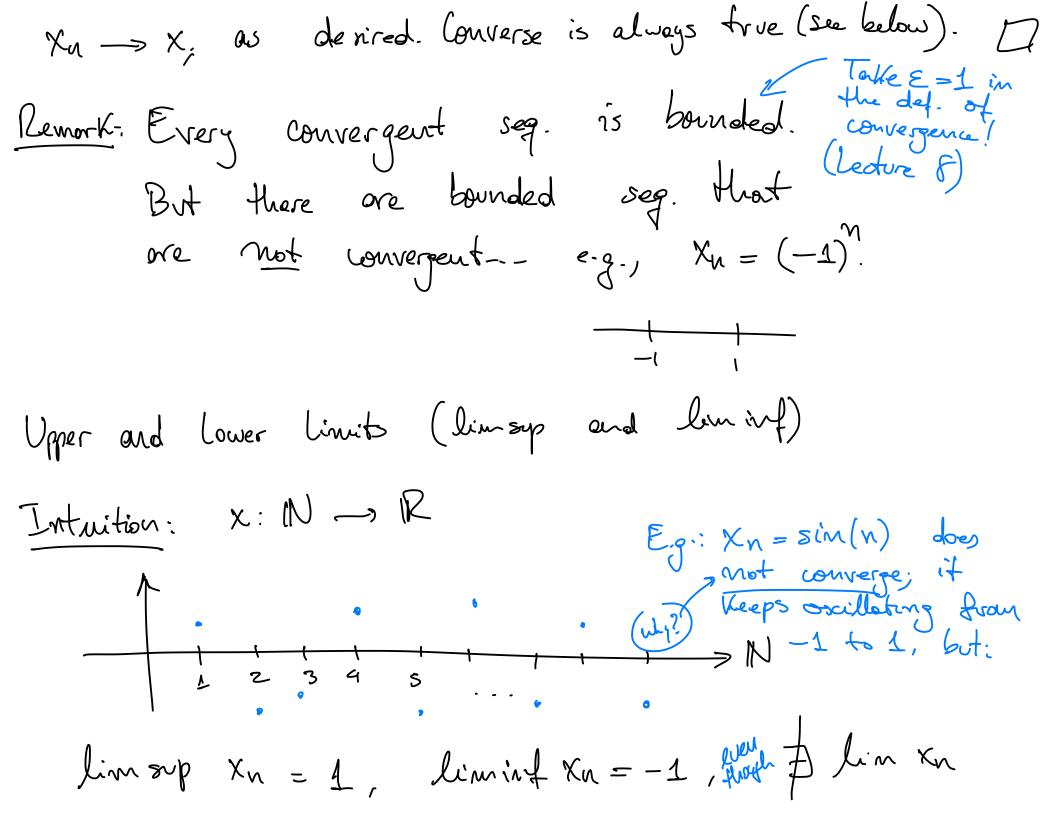
closed subset of the compact metric space X, it
is also compact. Clearly
$$E_{\rm N} \supset E_{\rm N+4}$$
, $\forall {\rm NEN}$, so
also $E_{\rm N} \supset E_{\rm N+4}$, $\forall {\rm NEN}$. By the Theorem above
(part b), it follows that $\bigcap E_{\rm N} = fp_{\infty}$ } consists of
a single point. $\bigcap E_{\rm N} = fp_{\infty}$ } consists of
A single point. $\bigcap E_{\rm N} = fp_{\infty}$ } consists of
diven $E > 0$, since diam $E_{\rm N} \xrightarrow{N > 0} 0$, $\exists {\rm No} \in {\rm N}$ s.t.
diam $E_{\rm N} \leq E$ for $N \supseteq {\rm No}$. Since $y_{\infty} \in E_{\rm N}$ we have
that $d(p, p_{\infty}) < E$ $\forall p \in E_{\rm N} = fp_{\rm N}$, $p_{\rm N+4}, \ldots$ }. This precisely
means that $d(p_{\rm N}, p_{\infty}) < E$ for $N \ge N_{\rm O}$, $E_{\rm N} = fp_{\rm N}$.
Let $fp_{\rm N}$ is a Cauchy seq. in $R^{\rm K}$. Let $E_{\rm N}$ be as

c

· compact métric spaces ave complete · RK is complete. For example, (D, d) is not complete, for instance, the Seq. 3Xn3 defined inductively by setting X1=1 and $X_{n+1} = \frac{X_n}{2} + \frac{1}{X_n} \in \mathbb{B} \qquad \begin{array}{c} \text{This is a} \\ \text{Cauchy seq. in B} \\ (b/c \text{ it is Cauchy in (R)}) \end{array}$ The above X_n converges to $\sqrt{2} \notin \mathbb{Q}$. Also, $(\mathbb{R} \setminus \mathbb{Q}, d)$ is not complete; for instance, let $X_n = \frac{\sqrt{2}}{N}$, $n \in \mathbb{N}$, and note that $X_n \in \mathbb{R} \setminus \mathbb{Q}$, while $\chi_n \longrightarrow O \in \mathbb{Q}$. This is a Couchy seq. in 1R19 b/c it is in 1R, or --- $\frac{\mathcal{E}_{\text{xervise}}}{\text{find such}} \left| \frac{\sqrt{2}}{N} - \frac{\sqrt{2}}{m} \right| = \sqrt{2} \left| \frac{N - M}{nm} \right| < \mathcal{E}_{j}$ for all $M, m \ge N$

Def: A seq.
$$\{k_n\}$$
 of real numbers is
a) monotonic increasing if $X_n \leq X_{n+4}$, $\forall n \in N$
b) monotonic decreasing if $X_n \geq X_{n+4}$, $\forall n \in N$.
A seq. is monotonic if it is either monotonic increasing
or monotonic decreasing.
 $E_X: \quad X_n = \frac{1}{n}$ monotonic decreasing
 $\frac{1}{n} > \frac{1}{n+1}$, $\forall n \in N$
 $\frac{x_3 \cdot y_2 \cdot y_2}{x_1 - 1}$ $x_1 = 1$
 $X_n = n^2$ monotonic increasing $n^2 < (n+1)^2$, $\forall n \in N$
 $\frac{x_1 - y_1^2}{x_1 - 1}$ is chot monotonic.
 $\frac{1}{n+1} = \frac{1}{n}$

Then X is an upper bound for Xn, i.e., Xn
$$\leq$$
 Xn \leq Xn \leq



Def: Let
$$\{X_n\}$$
 be a sage of view Mumbers, let
 $E = \{X \in [R=R \cup] \pm \omega\}: x \text{ is a subsequential limit of $[X_n]\}$
 $\lim_{n \to \infty} x_n = \sup E \in [R=R \cup] \pm \omega]$ i.e. $\exists [X_n] = \sup d = u$
 $\lim_{n \to \infty} x_n = \sup E \in [R=R \cup] \pm \omega]$ i.e. $\exists [X_n] = \sup d = u$
 $\lim_{n \to \infty} \inf X_n = \inf E \in [R=R \cup] \pm \omega]$ (Recall: In Video 6 of Lecture 8)
 $\lim_{n \to \infty} \inf X_n = \inf E \in [R=R \cup] \pm \omega]$ (Recall: In Video 6 of Lecture 8)
 $\operatorname{Note}: E \subset [R=R \cup] \pm \omega]$ might be unbounded.
Examples: $\lim_{n \to \infty} \sup \operatorname{Sim}(n) = 1$ in both cases, the
 $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} (n) = 1$] $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} (n) = 1$]
 $\lim_{n \to \infty} \inf \operatorname{Sim}(n) = -1 = \dim_{n \to \infty} \lim_{n \to \infty} (n)$$

$$\lim_{N\to\infty} \sup_{N\to\infty} N^{Z} = +\infty \qquad \text{In this case} \\ \lim_{N\to\infty} \inf_{n\to\infty} N^{Z} = +\infty \qquad \text{In this case} \\ E = \{+\infty\} \qquad \text{Im inf} \qquad N = +\infty \qquad \text{Im sup} \qquad \text{Xn} \\ \lim_{N\to\infty} Xn = \lim_{N\to\infty} \inf_{N\to\infty} Xn = \lim_{N\to\infty} \sup_{N\to\infty} Xn \\ \lim_{N\to\infty} Xn = \lim_{N\to\infty} \inf_{N\to\infty} Xn = \lim_{N\to\infty} \sup_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} Xn = \lim_{N\to\infty} \sup_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} Xn = \lim_{N\to\infty} \sup_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} Xn = \lim_{N\to\infty} \sup_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} Xn = \lim_{N\to\infty} \sup_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} \inf_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} xn \\ \text{Im Xn} = \lim_{N\to\infty} \inf_{N\to\infty} Xn \\ \text{Im Xn} = \lim_{N\to\infty} \lim_{N\to\infty} xn \\ \text{Im Xn} = \lim_{N\to\infty} xn \\$$

If
$$\overline{x} \in \mathbb{R}$$
, then E is bounded from above,
hence at lost one subseq. Lunct exists (in \mathbb{R})
and $\overline{x} = xp \in E \in follows$ from the fact that
E is closed (Video 6 of lecture 8).
If $\overline{x} = -\infty$, then $E = 4 - \infty$ }, so for all $M \in \mathbb{R}$,
 $xn > M$ for at most finitely many $n \in \mathbb{N}$, so
 $xn \to -\infty$, so again $-\infty \in E$.
Suppose $x > \overline{x}$, and $xn > \overline{x}$ for infinitely $x_1 \notin \overline{x} = \lim_{x \to \infty} x_1$, which constructions with loge
 $\overline{x} = \sup E$.
Finally, to prove uniqueness of \overline{x} , suppose that
 $p:q \in \mathbb{R} \cup 4\pm\infty$ with the above properties, and $p < \overline{q}$.