Def: A sequence $\left\{p_{n}\right\}$ in a metric space (X, d) is a Cauchy sequence if $\forall \varepsilon>0 \quad \exists N \in \mathbb{N}$ s.t. if $n, m \geqslant N$, then $d\left(p_{n}, p_{m}\right)<\varepsilon$.

Using

$$
\operatorname{diam} E=\sup (d(x, y): x, y \in E\}
$$

Prop: A seq. $\left\{p_{n}\right\}$ is Cauchy if and only if $\lim _{N \rightarrow \infty} \operatorname{diam}\left\{p_{n}: n \geqslant N\right\}=0$.
Note: As we will see shortly, a Cauchy seq. may or amoy not converge (depending on whether the space it is in has the property of being "complete").

Thu: a) If \bar{E} is the closure of E, then
$\operatorname{diam} \bar{E}=\operatorname{diam} E$
b) If K_{n} is a seq. of compact sets in X s.t. $K_{n} \supset K_{n+1}, \forall n \in \mathbb{N}$, and if

$$
\lim _{n \rightarrow \infty} \operatorname{diam} k_{n}=0
$$

then $\bigcap K_{n}$ consists of exactly one point. $n \in \mathbb{N}$
P1: a) Since $E C E$, it follows that

$$
\operatorname{diam} E \leq \operatorname{diam} E
$$

Conversely, fix $\varepsilon>0$ and $p, q \in \bar{E}$. Since $p, q \in \bar{E}$, $\exists p_{1}^{\prime} q^{\prime} \in E$ s.t. $d\left(p, p^{\prime}\right)<\varepsilon$ and $d\left(q, q^{\prime}\right)<\varepsilon$. Thus:

$$
d(p, q) \leq d\left(p, p^{\prime}\right)+d\left(p^{\prime}, q^{\prime}\right)+d\left(q^{\prime}, q\right)
$$

$$
<2 \varepsilon+d\left(p^{\prime}, q^{\prime}\right)
$$

$$
\Rightarrow d(p, q) \stackrel{\otimes}{\gtrless} 2 \varepsilon+\operatorname{diam} E .
$$

Since $\varepsilon>0$ is arbitrary, and can be
 chosen as small as dexiced, if follows that:

$$
\operatorname{sop}\{d(p, q): p, q \in \bar{E}\}=\operatorname{dian} \bar{E} \frac{\leq}{*} \operatorname{dian} E
$$ $k \neq \phi$. If k contains more than 1 point, k_{1} k_{2} $\underbrace{k+}$ then $\operatorname{diam} K>0$, but this contradicts $\lim _{n \rightarrow \infty} \operatorname{diam} K_{n}=0$ because $\operatorname{diam} K_{n} \geqslant \operatorname{dian} K$.

Thu. a) Every convergent sequence is a Cauchy sequence.
b) Every Cauchy seq. in a compact metric space converges.
c) Every Cauchy seq. in \mathbb{R}^{k} converges.

Pf: a) If $\left\{p_{n}\right\}$ is a convergent seed., soy $p_{n} \rightarrow p_{\infty}$, then $\forall \varepsilon>0 \exists N \in \mathbb{N}$ s.t, if $n \geqslant N, \quad d\left(p_{u}, p_{\infty}\right)<\varepsilon / 2$. Then if $m, n \geqslant N$, we have:

$$
d\left(p_{n}, p_{m}\right) \varsigma d\left(p_{n}, p_{\infty}\right)+d\left(p_{\infty}, p_{m}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

This means that $\left\{p_{n}\right\}$ is Cauchy.
b) Let $\{p u\}$ be a Cauchy seq. in a compact metric space X. Let $E_{N}=\left\{p_{n}: n \geqslant N\right\}$. Then, by the above, $\lim _{N \rightarrow \infty} \operatorname{diam} \bar{E}_{N}=0$. Moreover, since $\overline{E_{N}}$ is a
closed subset of the compact metric space X, it is also compact. Clearly $E_{N} \supset E_{N+1}, \forall N \in N$, so also $\overline{E_{N}} \supset \overline{E_{N+1}}, \forall N \in \mathbb{N}$. By the Theorem above (part $b)$, it follows that $\bigcap_{N \in \mathbb{N}} \overline{E_{N}}=\left\{p_{\infty}\right\}$ consists of
a single point. a single point. Given $\varepsilon>0$, since diam $\overline{E_{N}} \xrightarrow{N \lambda_{\infty}} 0, \exists N_{0} \in \mathbb{N}$ st. diam $\overline{E_{N}}<\varepsilon$ for $N \geqslant N_{0}$. Since $p_{\infty} \in \bar{E}_{N}$ we have that $d\left(p, p_{\infty}\right)<\varepsilon \quad \forall p \in \bar{E}_{N}$, in particular also $d\left(p, p_{\infty}\right)<\varepsilon, \quad \forall p \in E_{N}=\left\{p_{N}, p_{N+1}, \ldots\right\}$. This precisely means that $d\left(p_{n}, p_{\infty}\right)<\varepsilon$ for $n \geqslant N_{0}$; ie., the Cauchy seq. $\left\{p_{n}\left\{\right.\right.$ converges to p_{∞}.
c) Let $\{p n\}$ is a Cauchy sea. in \mathbb{R}^{k}. Let E_{N} be as
before, that is, $E_{N}=\left\{p_{N}, p_{N+1}, \ldots\right\}$. For some $N \in \mathbb{N}$, $\operatorname{diam} E_{N}<1$. Thus, since

$$
\left\{p_{n}: n \in \mathbb{N}\right\}=\underbrace{\left\{p_{1}, p_{2}, \ldots, p_{N-1}\right\}}_{\text {finctaly many pts }} \cup \underbrace{E_{N}}_{\text {diam }<1}
$$

it follows that $\left\{p_{n}\right\}$ is bounded. Therefore, its clozore,
 item (b), it follows that Ipa\} ~ i s ~ c o n v e r g e n t . ~
Def: A metric space (X, d) is complete if every Cauchy seq in (X, d) is convergent.
By the previous theorem:

- Compact metric spaces are complete
- \mathbb{R}^{k} is complete.

For example, (\mathbb{Q}, d) is not complete, for instance, the seq. $\left\{x_{n}\right\}$ defined inductively by setting $x_{1}=1$ and

The above x_{n} converges to $\sqrt{2} \notin \mathbb{Q}$.
Also, $(\mathbb{R} \backslash Q, d)$ is not complete; for instance, let $x_{n}=\frac{\sqrt{2}}{n}, n \in \mathbb{N}$, and note that $x_{n} \in \mathbb{R} \backslash \mathbb{Q}$, while $\left(x_{n} \rightarrow 0 \in \mathbb{Q}\right.$.

This is a
Candor seq. in R R
Condole is is in IR, or ...

$$
\begin{aligned}
& \text { for all mum } 2 \underline{N}
\end{aligned}
$$

Def: A seq. $\left\{x_{n}\right\}$ of real numbers is
a) monotonic increasing if $x_{n} \leq x_{n+1}, \forall n \in \mathbb{N}$
b) monotonic decreasing if $x_{n} \geqslant x_{n+1}, \forall n \in \mathbb{N}$.

A seq. is monotonic if if is either monotonic increasing or monotonic decreasing.
Ex: $\quad x_{n}=\frac{1}{n}$ monotonic decreasing

$$
\begin{array}{ll}
x_{3}=1 / 3 x_{2} \leq 1 / 2 & x_{1}=1 \\
1 & 1
\end{array}
$$

$$
\frac{1}{n}>\frac{1}{n+1}, \forall n \in \mathbb{N}
$$

$x_{n}=n^{2}$ monotone increasing $n^{2}<(n+1)^{2}, \forall n \in \mathbb{N}$

$x_{n}=(-1)^{n}$ is not monotonic.

Tho: Suppose $\left\{x_{n}\right\}$ is monotone. Then $\left\langle x_{n}\right\}$ is convergent of and only if it is bounded.
P!: WLOG, say $\left\langle x_{n}\right\}$ is monotonic increasing, ie., $x_{n} \leq x_{n+1}, \forall_{n} \in \mathbb{N}$. If $\left\{x_{n}\right\}$ is bounded, then

Then x is an upper bound for x_{n}, i.e., $x_{n} \leq x, \forall n \in \mathbb{N}$. For $\varepsilon>0, \exists N \in \mathbb{N}$ s.t. $\quad x-\varepsilon<x_{N} \leqslant X_{\text {; }}$, since otherwise $X-\varepsilon$ would an upper bound smaller than the sup, Since $x_{n} \geqslant x_{N}$ if $n \geqslant N$, we have that for all $n \geqslant N, \quad x-\varepsilon<x_{n} \leqslant x$, this means that
$x_{n} \rightarrow x$, as desired. Converse is always true (see below). \square
Remark. Every convergent seq. is bounded. The del. of in the def. of, But there ore bounded seq. that (lecture 8) are not convergent... e.g., $x_{n}=(-1)^{n}$.

Upper and lower limits (limsup and liminf)
Intuition: $x: \mathbb{N} \rightarrow \mathbb{R}$
Egg: : $X_{n}=\sin (n)$ does

$\limsup x_{n}=1, \liminf x_{n}=-1$, , ardent $\neq \lim x_{n}$

Def: Let $\left\{x_{n}\right\}$ be a seep. of real numbers, let
$E=\{x \in \bar{R}=R \cup\{ \pm \infty\}: x$ is a subsequential limit of in $\}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{sap}_{n}=\operatorname{sop} E \in \bar{R}=R \cup\left\{ \pm \infty 1\left\{\begin{array}{l}
\text { ide. } 3\left\{x_{n}\right\} \text { a subset. } \\
\text { of } \\
\left.2 x_{n}\right\}
\end{array}\right.\right. \\
& \text { of }\left\{x_{n}\right\} \text { set. } x_{n_{k}} \rightarrow x \text {. }
\end{aligned}
$$

Note: $E \subset \overline{\mathbb{R}}=\mathbb{R U}\{ \pm \infty\{$ might be unbounded.
Examples: $\lim _{n \rightarrow \infty} \sup \sin (n)=1\left\{\begin{array}{l}\text { in both cases, the } \\ \text { set of subeneat }\end{array}\right.$ set of subsequential $\left.\lim _{n \rightarrow \infty} \sup (n)=1\right\}$ limits is $E=[-1,1]$.

$$
\lim _{n \rightarrow \infty} \text { inf } \sin (n)=-1=\liminf _{n \rightarrow \infty} \cos (n)
$$

$$
\left.\begin{array}{l}
\lim _{n \rightarrow \infty} \sup _{n}=+\infty \\
\lim _{n \rightarrow \infty} \text { inf } n^{2}=+\infty
\end{array}\right\}
$$

Note：If $\left\{x_{n}\right\}$ converges，then：

$$
\lim _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=\operatorname{limsip}_{n \rightarrow \infty} x_{n}
$$

Thy：Let $\left\{x_{n}\right\}$ be a seq．of real numbers，and $E \subset \mathbb{R} \cup\{ \pm \infty\}$ be the set of subsequential limits of 化\} . ~ T h e n ~ $\bar{x}=\limsup x_{n}$ is the only number st． $\bar{x} \in E$ and if $x>\bar{x}$ ， $\exists N \in \mathbb{N}$ s．t．$n \geqslant N$ then $x_{n}<x$ ．
P1：If $\bar{x}=+\infty$ ，then E is not bounded from above， ce．$\exists x_{n_{k}}$ subseg．s．t．$x_{n_{k}} \rightarrow+\infty$ ，by defy，this means $\bar{x}=+\infty \in E$.

If $\bar{x} \in \mathbb{R}$. then E is bounded from above, hence at least one sobseg. lancet exists (in \mathbb{R}) and $\bar{x}=\operatorname{spp} E \in E$ follows from the fact that E is closed (Video 6 of lecture 8).
If $\bar{x}=-\infty$, then $E=\{-\infty\}$; so for all $M \in \mathbb{R}$, $x_{n}>M$ for at moot finitely many $n \in \mathbb{N}$, ∞ $x_{n} \rightarrow-\infty$, so again $-\infty \in E$.
Suppose $x>\bar{x}$, and $x_{n} \geqslant x$ for infinitely many $n \in \mathbb{N}$. Then $\exists y \in E$ s.t. $y \geqslant x>\bar{x}$; which contradicts

$$
\bar{x}=\sup E .
$$

Finally, to prove uniqueness of \bar{x}, suppose that $p, q \in \mathbb{R} \cup\{ \pm \infty\}$ with the above properties, and $p<q$.

Choose x sit. $p<x<q$.
Since p satizfics the property that if $x>p$ then $\exists N \in \mathbb{N}$ s.t. $n \geqslant N \Rightarrow x_{n}<x$, we have $x_{n}<x$ for $n \geqslant N$. But then $q \notin E ;$ contradiction
Examples: : $x_{n}=\frac{(-1)^{n}}{1+\frac{1}{n}}$ hor $\lim _{n \rightarrow \infty} x_{n}=1$

$$
\liminf _{n \rightarrow \infty} x_{n}=-1
$$

- $\left\{x_{n}: n \in \mathbb{N}\left\{=Q_{\pi}\right.\right.$ since \mathbb{Q} is countable, there exists a sea. itu\} ~ s e t . ~ every rational number belongs to \{xn!.
$E=R \cup\{ \pm \infty\} \longleftarrow E$ Every veal number is a solver. limit.
$\liminf _{n \rightarrow \infty} x_{n}=-\infty, \quad \lim _{m \rightarrow \infty}$ sup $x_{n}=+\infty$.

