MAT347 /644, Spring 2026 Renato Ghini Bettiol

Lecture 3

1. LINEAR PROGRAMS IN 2 VARIABLES

A linear program (LP) in 2 variables z = (x1,z2) is an optimization
problem of the form
min ¢z +cexy St a1 + ara xe < by,

a1 1 + a2 x2 < ba,

Am1 T1 + am2 T2 < by,
z1 >0, 2 > 0.
Note that the above LP can be rewritten in matrix notation as
1) min ¢’z st. Az <b,
x>0,

where x = (21, x2), inequalities such as v < w between vectors are defined
to mean the coordinate-wise inequalities between the corresponding entries
v; < w;, and A = (a;5) is an m x 2 matrix, b = (b;) € R™, where the indices
have ranges 1 <¢<mand 1 < j < 2.

Recall that (-)” denotes the transpose of a vector, or of a matrix. In
particular, 27y is nothing but the dot product of the vectors x and y, also
often written x - y or (x,y).

Exercise 1. Find the matrix A and vectors b, ¢ so that the problem from
Lecture 1:
min 1.00x; +1.20x2 s.t. 8z + 6x9 > 11,
41 + 1229 > 16,
1 20, xz2 >0,

can be written in the above form . (Remember that u < v if and only if
—u > —v.)

Exercise 2. How can you relate the mazimization problem

max clz st. Az <b,
x>0,

to ? We shall also refer to an optimization problem as above as a linear
program (LP).

The set of points = € R? that satisfy the constraints Az < b and x > 0 is
called the feasible region, and points in the feasible region are called feasible
solutions. A feasible solution is called an optimal solution if it achieves the
min/max of the target function ¢’ x. The feasible region of an LP in 2
variables is an intersection of finitely many half spaces a;1x1 + a0xe < b;
hence it is a convex polygon in R?. Note that it may be empty (problem is
infeasible) or noncompact.
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Exercise 3. Give examples of LPs with the following feasible regions:
(a) the empty set;

(b) the first quadrant;

(c) the horizontal strip [0, +o0) x [0, 1];

(d) the square [0, 1] x [0, 1];

(e) the triangle with vertices (0,0), (2,0) and (0, 3).

2. BRUTE FORCE SOLUTION AND GEOMETRIC SOLUTION

In order to solve an LP in 2 variables, one may follow a very direct
geometric method:

(i) Identify the feasible region S C R?, which is a polygon: more precisely,

find the coordinates of all vertices (extremal points) of S

(ii) Compute the target function at all vertices;

(iii) Order the results; the smallest value is the min.
As we shall see later, this is a rather crude and brue force approach, which
would be extremely slow in larger problems. However, it is a first step in our
journey to solving LPs.

Exercise 4. Implement the above strategy in the following LP:
max 4x1—2x9 s.t. 2z +4x0 <12
1+ 22<5
x9 < 5/2
T1 — X9 < 4
1 >0, 20 > 0.
What is the optimal solution? Repeat replacing max with min.

Exercise 5. FExplain the procedure you used to find the vertices. How well
would it scale if the number of sides of the polygon grows?

An improvement on the above is to find the optimal solution by considering

levelsets
Li={zcR?®:Ta=t}

of the target function for varying t € R. The gradient of z — ¢! z is clearly
the vector ¢!, which is therefore orthogonal to the levelsets L;. ‘Moving in’
levelset lines L; from ‘infinity’ until they touch the feasible region, we can
geometrically identify which vertex is the optimal solution, and then find its
coordiantes by solving the equations that correspond to the lines intersecting
at that vertex.



Solution to Exercise 4. The feasible region is as follows:
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In order to find the vertices, we find all pairwise intersections of lines that

define the boundary of the feasible region and discarding those solutions that

are not feasible. Note that these lines correspond to the equations obtained

from the constraints by replacing < with =. Analyzing the given constraints,
we conclude that the vertices are:

(4,1), (1,5/2), (9/2,1/2), (0,5/2), (4,0), (0,0).
In Exercise 5 we discuss how to systematize this process of finding vertices
(for now, in dimension 2). Overlapping with levelsets, we find:
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Thus, min ¢’ x = 17 is achieved

at (9/2,1/2).

x = —5 is achieved at (0,5/2), and maxc
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Solution to Exercise 5 (Method to find vertices). Let us write the feasible
region S C RR2 as the set of x € R? such that Az < b. Note that the matrix
A and the vector b must encode all constraints, including x > 0.

The key insight is that v € § is a vertex if and only if v € S is a point
where 2 linearly independent inequality constraints hold with equality. Thus,
we proceed as follows: for each choice of 2 (linearly independent) inequalities

ag;x <b;; and ag;x < by,

we transform them into equations

T
1

T

a;r=">b; and a;w="b;

and find the unique solution z;, ;,) € R? to this system of linear equations
using, e.g., row reduction (Gaussian elimination). Then, we must check if
T(iyip) € S, which is done by plugging in z(;, ;,) into the remaining inequalities
a?ac < bj, for all j ¢ {i1,i2}. If they are all satisfied, then x
of S. If not, we discard z
independent constraints.

Note that if .S is determined by m linearly independentlﬂ inequalities, then
the above process will require solving (ZL) systems of linear equations, and
checking if the solution satisfies the remaining m — 2 inequalities.

i1,2) 18 @ vertex

i1,iz) and move on to the next choice of 2 linearly

1Use row reduction on A to determine if there are ‘redundant’ constraints and remove
them to work with linearly independent constraints.
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