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Lecture 3

1. Linear programs in 2 variables

A linear program (LP) in 2 variables x = (x1, x2) is an optimization
problem of the form

min c1x1 + c2x2 s.t. a11 x1 + a12 x2 ≤ b1,

a21 x1 + a22 x2 ≤ b2,

. . .

am1 x1 + am2 x2 ≤ bm,

x1 ≥ 0, x2 ≥ 0.

Note that the above LP can be rewritten in matrix notation as

(1)
min cT x s.t. A x ≤ b,

x ≥ 0,

where x = (x1, x2), inequalities such as v ≤ w between vectors are defined
to mean the coordinate-wise inequalities between the corresponding entries
vi ≤ wi, and A = (aij) is an m× 2 matrix, b = (bi) ∈ Rm, where the indices
have ranges 1 ≤ i ≤ m and 1 ≤ j ≤ 2.

Recall that (·)T denotes the transpose of a vector, or of a matrix. In
particular, xT y is nothing but the dot product of the vectors x and y, also
often written x · y or ⟨x, y⟩.

Exercise 1. Find the matrix A and vectors b, c so that the problem from
Lecture 1:

min 1.00x1 + 1.20x2 s.t. 8x1 + 6x2 ≥ 11,

4x1 + 12x2 ≥ 16,

x1 ≥ 0, x2 ≥ 0,

can be written in the above form (1). (Remember that u ≤ v if and only if
−u ≥ −v.)

Exercise 2. How can you relate the maximization problem

max cT x s.t. A x ≤ b,

x ≥ 0,

to (1)? We shall also refer to an optimization problem as above as a linear
program (LP).

The set of points x ∈ R2 that satisfy the constraints Ax ≤ b and x ≥ 0 is
called the feasible region, and points in the feasible region are called feasible
solutions. A feasible solution is called an optimal solution if it achieves the
min/max of the target function cT x. The feasible region of an LP in 2
variables is an intersection of finitely many half spaces ai1x1 + ai2x2 ≤ bi
hence it is a convex polygon in R2. Note that it may be empty (problem is
infeasible) or noncompact.
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Exercise 3. Give examples of LPs with the following feasible regions:
(a) the empty set;
(b) the first quadrant;
(c) the horizontal strip [0,+∞)× [0, 1];
(d) the square [0, 1]× [0, 1];
(e) the triangle with vertices (0, 0), (2, 0) and (0, 3).

2. Brute force solution and geometric solution

In order to solve an LP in 2 variables, one may follow a very direct
geometric method:

(i) Identify the feasible region S ⊂ R2, which is a polygon: more precisely,
find the coordinates of all vertices (extremal points) of S;

(ii) Compute the target function at all vertices;
(iii) Order the results; the smallest value is the min.

As we shall see later, this is a rather crude and brue force approach, which
would be extremely slow in larger problems. However, it is a first step in our
journey to solving LPs.

Exercise 4. Implement the above strategy in the following LP:

max 4x1 − 2x2 s.t. 2x1 + 4x2 ≤ 12

x1 + x2 ≤ 5

x2 ≤ 5/2

x1 − x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

What is the optimal solution? Repeat replacing max with min.

Exercise 5. Explain the procedure you used to find the vertices. How well
would it scale if the number of sides of the polygon grows?

An improvement on the above is to find the optimal solution by considering
levelsets

Lt = {x ∈ R2 : cT x = t}
of the target function for varying t ∈ R. The gradient of x 7→ cT x is clearly
the vector cT , which is therefore orthogonal to the levelsets Lt. ‘Moving in’
levelset lines Lt from ‘infinity’ until they touch the feasible region, we can
geometrically identify which vertex is the optimal solution, and then find its
coordiantes by solving the equations that correspond to the lines intersecting
at that vertex.
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Solution to Exercise 4. The feasible region is as follows:
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In order to find the vertices, we find all pairwise intersections of lines that
define the boundary of the feasible region and discarding those solutions that
are not feasible. Note that these lines correspond to the equations obtained
from the constraints by replacing ≤ with =. Analyzing the given constraints,
we conclude that the vertices are:

(4, 1), (1, 5/2), (9/2, 1/2), (0, 5/2), (4, 0), (0, 0).

In Exercise 5 we discuss how to systematize this process of finding vertices
(for now, in dimension 2). Overlapping with levelsets, we find:
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Thus, min cT x = −5 is achieved at (0, 5/2), and max cT x = 17 is achieved
at (9/2, 1/2).
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Solution to Exercise 5 (Method to find vertices). Let us write the feasible
region S ⊂ R2 as the set of x ∈ R2 such that Ax ≤ b. Note that the matrix
A and the vector b must encode all constraints, including x ≥ 0.

The key insight is that v ∈ S is a vertex if and only if v ∈ S is a point
where 2 linearly independent inequality constraints hold with equality. Thus,
we proceed as follows: for each choice of 2 (linearly independent) inequalities

aTi1x ≤ bi1 and aTi2x ≤ bi2

we transform them into equations

aTi1x = bi1 and aTi2x = bi2

and find the unique solution x(i1,i2) ∈ R2 to this system of linear equations
using, e.g., row reduction (Gaussian elimination). Then, we must check if
x(i1,i2) ∈ S, which is done by plugging in x(i1,i2) into the remaining inequalities

aTj x ≤ bj , for all j /∈ {i1, i2}. If they are all satisfied, then x(i1,i2) is a vertex
of S. If not, we discard x(i1,i2) and move on to the next choice of 2 linearly
independent constraints.

Note that if S is determined by m linearly independent1 inequalities, then
the above process will require solving

(
m
2

)
systems of linear equations, and

checking if the solution satisfies the remaining m− 2 inequalities.

1Use row reduction on A to determine if there are ‘redundant’ constraints and remove
them to work with linearly independent constraints.
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