
MAT347/644, Spring 2026 Renato Ghini Bettiol

Lecture 5

1. Extremal points

Recall that S ⊂ Rn is convex if given any x, y ∈ S, the line segment
(1 − t)x + ty, 0 ≤ t ≤ 1, joining x and y lies entirely in S. A set S ⊂ Rn

is bounded if there exists R > 0 such that all points in S are at distance at
most R from 0 ∈ Rn, that is, for all x ∈ S, ∥x∥ ≤ R.

A point v ∈ S in a convex set is called extremal if v = (1− t)x+ ty with
x, y ∈ S and 0 ≤ t ≤ 1 implies that either t = 0 or t = 1. In other words, v
is extremal if it cannot be placed in the interior of any line segment with
endpoints in S.

Exercise 1. Determine the extremal points of the following convex sets:

(i) A bounded polyhedron S ⊂ Rn

(ii) The unit ball B = {x ∈ Rn : ∥x∥ ≤ 1}

A convex combination of the points x1, . . . , xr ∈ Rn is a point of the form

c1x1 + · · ·+ crxr ∈ Rn,

where c1, . . . , cr ∈ R satisfy
r∑

i=1
ci = 1 and ci ≥ 0 for all 1 ≤ i ≤ r. The set of

all convex combinations of x1, . . . , xr is called the convex hull of x1, . . . , xr,
and denoted conv(x1, . . . , xr).

Exercise 2. Prove that conv(x1, . . . , xr) is convex.

Exercise 3. What is the convex hull of 2 points in Rn?

Exercise 4. What is the convex hull of n points in R2?

The following are foundational statements that we will use but not prove.
(You might want to think about how you would prove them.)

Theorem 1. A polyhedron is bounded if and only if it does not contain a
line.

Theorem 2 (Krein-Milman, baby version). A bounded polyhedron coincides
with the convex hull of its vertices (i.e., its extremal points).

By the above, ‘determining’ a bounded polyhedron is the same as ‘de-
termining’ its vertices. In order to do this using as input the description
S = {x ∈ Rn : Ax ≤ b} of a polyhedron as an intersection of half-spaces
aTi x ≤ bi, recall that a feasible solution x ∈ S is a vertex if it lies in the inter-
section of n of the above half-spaces, provided they are linearly independent
(hence their intersection is a single point). This leads us to the following:

Theorem 3. Consider the polyhedron S = {x ∈ Rn : Ax ≤ b}, where A is
an m× n matrix and b ∈ Rm. A point v ∈ S is a vertex of S if and only if
there exist n linearly independent inequality constraints of S that hold with
equality at v, i.e., there exist i1, . . . , in ∈ {1, . . . ,m} such that aTi1 v = bi1,

. . . , aTin v = bin and {ai1 , . . . , ain} are linearly independent.
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The above yields a method to find all vertices of a polyhedron

S = {x ∈ Rn : Ax ≤ b},

namely one proceeds as follows. For each1 subset {i1, . . . , in} of {1, . . . ,m},
do:

(i) Check if ai1 , . . . , ain are linearly independent (if NO, then STOP);
(ii) Compute the unique solution v ∈ Rn to aTi1 v = bi1 , . . . , a

T
in
v = bin ;

(iii) If v ∈ S, i.e., Av ≤ b, then v is a vertex. If not, then it is not a vertex.

Running the above for loop through all subsets of {1, . . . ,m} and collecting
the resulting vertices, one obtains the complete list of vertices of S. In
particular, this proves that a polyhedron only has finitely many vertices.

This algorithm is implemented in the Mathematica notebook vertices.nb

Exercise 5. Find all vertices of the polyhedron S = {x ∈ Rn : Ax ≤ b}
where

(i) A =

−1 0
0 −1
1 1

, b =

0
0
1



(ii) A =


1 −1 0 1
0 1 1 0
1 0 −1 1
0 1 0 1
1 1 1 1

, b =


2
3
4
0
3


2. Linear programs in any number of variables

A general linear program (LP) in n variables x = (x1, x2, . . . , xn) is an
optimization problem of the form

(1)

min c1x1 + c2x2 + · · ·+ cnxn s.t. a11 x1 + a12 x2 + a1n xn ≤ b1,

a21 x1 + a22 x2 + a2n xn ≤ b2,

. . .

am1 x1 + am2 x2 + amn xn ≤ bm.

The above constraints might have been obtained from linear constraints with
≤, =, or ≥, using the elementary tricks we discussed in lecture, and might (or
might not) include the nonnegativity constraints x1 ≥ 0, . . .xn ≥ 0. Recall
that maximization problems reduce to the above as well.

Note that the above LP can be rewritten in matrix notation as

(2) min cT x s.t. A x ≤ b,

1Note there are
(
m
n

)
such subsets.
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where x = (x1, . . . , xn) ∈ Rn, c = (c1, . . . , cn) ∈ Rn, b = (b1, . . . , bm) ∈ Rm,
and

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


The rows of A are denoted ai = (ai1, ai2, . . . , ain), for 1 ≤ i ≤ m. These
conventions are as in earlier lectures; in particular, the indices have ranges
1 ≤ i ≤ m and 1 ≤ j ≤ n.

Finally, the following statement explains the relevance of extremal points:

Theorem 4. If the optimization problem (2) is feasible and bounded, i.e.,
the polyhedron S = {x ∈ Rn : Ax ≤ b} is nonempty and bounded, then there
exists an extremal point v ∈ S which is an optimal solution.
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