MAT347 /644, Spring 2026 Renato Ghini Bettiol

Lecture 5

1. EXTREMAL POINTS

Recall that S C R" is convex if given any z,y € S, the line segment
(1—-t)z+ty, 0 <t <1, joining  and y lies entirely in S. A set S C R"”
is bounded if there exists R > 0 such that all points in S are at distance at
most R from 0 € R™, that is, for all z € S, ||z]| < R.

A point v € S in a convex set is called extremal if v = (1 — t)x + ty with
z,y € S and 0 <t <1 implies that either ¢ = 0 or ¢t = 1. In other words, v
is extremal if it cannot be placed in the interior of any line segment with
endpoints in S.

Exercise 1. Determine the extremal points of the following convex sets:

(i) A bounded polyhedron S C R"
(ii) The unit ball B = {z € R" : ||z|| <1}

A conver combination of the points z1,...,x, € R"™ is a point of the form

cir1 + -+ e € R?,

-
where ¢1,...,¢, € Rsatisfy Y ¢; =1 and ¢; > 0 for all 1 < i <r. The set of

=1
all convex combinations of x1,...,x, is called the convex hull of z1,...,x,,
and denoted conv(zy,...,z,).
Exercise 2. Prove that conv(zy,...,x,) is convex.

Exercise 3. What is the convex hull of 2 points in R"?
Exercise 4. What is the convex hull of n points in R??

The following are foundational statements that we will use but not prove.
(You might want to think about how you would prove them.)

Theorem 1. A polyhedron is bounded if and only if it does not contain a
line.

Theorem 2 (Krein-Milman, baby version). A bounded polyhedron coincides
with the convex hull of its vertices (i.e., its extremal points).

By the above, ‘determining’ a bounded polyhedron is the same as ‘de-
termining’ its vertices. In order to do this using as input the description
S ={z € R" : Az < b} of a polyhedron as an intersection of half-spaces
a;; x < by, recall that a feasible solution x € S is a vertex if it lies in the inter-
section of n of the above half-spaces, provided they are linearly independent
(hence their intersection is a single point). This leads us to the following:

Theorem 3. Consider the polyhedron S = {x € R" : Ax < b}, where A is
an m x n matriz and b € R™. A point v € S is a vertex of S if and only if
there exist n linearly independent inequality constraints of S that hold with
equality at v, i.e., there exist i1,...,i, € {1,...,m} such that ag; v = b,

T

ooy ap v ="b;, and {a;,...,a;,} are linearly independent.



The above yields a method to find all vertices of a polyhedron
S={xeR": Az < b},

namely one proceeds as follows. For eaclﬂ subset {i1,...,i,} of {1,...,m},
do:

(i) Check if a;,,...,a;, are linearly independent (if NO, then STOP);

(ii) Compute the unique solution v € R™ to ag v=">i, ..., aa v="b;,;

(iii) If v € S, i.e., Av < b, then v is a vertex. If not, then it is not a vertex.

Running the above for loop through all subsets of {1,...,m} and collecting

the resulting vertices, one obtains the complete list of vertices of S. In

particular, this proves that a polyhedron only has finitely many vertices.
This algorithm is implemented in the Mathematica notebook vertices.nb

Exercise 5. Find all vertices of the polyhedron S = {z € R" : Az < b}
where

-1 0 0
) A= 0 -1],b=1{0
11 1
1 -1 0 1 2
01 1 0 3
) A=]|1 0 -1 1|, b= |4
01 0 1 0
11 1 1 3

2. LINEAR PROGRAMS IN ANY NUMBER OF VARIABLES

A general linear program (LP) in n variables = (1, x2,...,zy) is an
optimization problem of the form

min  cix; +coxra+ -+ cpxy St apr T + a2 x2 + a1y T < by,
1) as1 r1 + a2 T2 + agp Ty < ba,

A1 T1 + Qm2 T2 + Qmn Ty, < by

The above constraints might have been obtained from linear constraints with
<, =, or >, using the elementary tricks we discussed in lecture, and might (or
might not) include the nonnegativity constraints z; > 0, ...x, > 0. Recall
that maximization problems reduce to the above as well.

Note that the above LP can be rewritten in matrix notation as

(2) min ¢’z st. Az <b,

INote there are (’:) such subsets.



where z = (x1,...,2,) € R", c = (c1,...,¢y) € R", b= (b1,...,by) € R™,
and

aill a2 e A1n
asy ano e aon
A p—
aAml am2 ... Amn,
The rows of A are denoted a; = (a;1,a;2,...,an), for 1 < i < m. These

conventions are as in earlier lectures; in particular, the indices have ranges
1<i<mand1<j<n.

Finally, the following statement explains the relevance of extremal points:
Theorem 4. If the optimization problem is feasible and bounded, i.e.,

the polyhedron S = {x € R"™ : Az < b} is nonempty and bounded, then there
exists an extremal point v € S which is an optimal solution.
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