Math 110, Spring 2016 HWK04 due Feb 17

1. Compute these integrals via substitution.
(a) $\int_{0}^{4} \sqrt{5 y+1} d y$
(b) $\int \sqrt{\frac{x^{4}}{x^{3}-1}} d x$
(c) $\int_{1}^{e^{\pi / 4}} \frac{4 d t}{t\left(1+(\ln t)^{2}\right)}$
2. Compute these integrals via integration by parts.
(a) $\int_{0}^{\ln 2} t^{2} e^{4 t} d t$
(b) $\int \arcsin y d y$
(c) $\int_{0}^{1} x^{3} e^{x^{2} / 2} d x$
3. Compute these integrals via any means you can.
(a) $\int \frac{d x}{x(\ln x)^{3}}$
(b) $\int \frac{\ln x}{x} d x$
(c) $\int e^{x} \sin \left(e^{x}\right) d x$
(d) $\int e^{2 x} \sin (x) d x$
(e) $\int \ln \left(x+x^{2}\right) d x$
4. Find the area of the shaded region. The curved boundary is $y=x \sqrt{4-x^{2}}$ (problem 5.6 \#47 in the book).

5. The figure shows triangle AOC inscribed in the region cut from the parabola $y=x^{2}$ by the horizontal line $y=a^{2}$. Find the limit as a approaches zero of the ratio of the area of the triangle to the area of the parabolic region (problem 5.6 \#107 in the book).

