Math 110, Spring 2016 HWK11 due Apr 13

1. Let X represent the annual income of a randomly sampled Wharton graduate (measured in hundreds of thousands of dollars) and let Y represent the fraction of this income the person is willing to spend yearly on a car loan. A probability model for the random pair (X, Y) is that it has density $C x e^{-x}$ on the region $x \geq 0,0.2 \geq y \geq 0$.
(a) What is the normalizing constant, C ?
(b) What is the mean of X ?
(c) What is the mean of Y ?
(d) Set up an integral to compute the probability that a randomly sampled Wharton graduate is willing to pay more than $\$ 20,000$ annually for their car.
(e) Can you do the integral?
2. Let $f(x, y)=\sqrt{x^{2}+x y+y^{2}}$.
(a) Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(3,5)$.
(b) Use the partial derivatives to estimate $f(3.1,5)$.
(c) Use the partial derivatives to estimate $f(2.9,5.2)$.
(d) Use the partial derivatives to evaluate the slope of the tangent line to the curve $f(x, y)=7$ at the point $(3,5)$. This will be an exact computation, not an estimate.
3. The number of visitors to a national park depends on the ticket prices and the level of staffing. Let V, T and S denote these variables (in respective units of people per year, dollars and full time employees).
(a) What is the interpretation of the quantity $\frac{\partial V}{\partial T}$?
(b) Is $\frac{\partial V}{\partial T}$ likely to be greater or less than zero?
(c) What is the interpretation of the quantity $\frac{\partial V}{\partial S}$?
(d) Is $\frac{\partial V}{\partial S}$ likely to be greater or less than zero?
(e) In an effort to make the park self-supporting, Congress has pegged the staffing to ticket prices via the formula $S=10+3 T$, where S_{0} and k are constants. Explain, in this context, the meaning of the total derivative $\frac{d V}{d T}$ and give a formula for this in terms of the partial derivatives of V with respect to T and S.
(f) Suppose $V(T, S)=50,000 e^{-T / 10} \frac{S}{S+45}$. Compute $\frac{d V}{d T}$ when $T=15$
4. Suppose that x and y vary along a piece of the curve $x^{3}-3 x y+y^{3}=3$ in the first quadrant.
(a) Differentiate implicitly using x as the independent variable and y as the dependent variable.
(b) Use this to evaluate $d y / d x$ at the point $(1,2)$.
(c) Now differentiate implicitly with y being the independent variable and x the dependent variable and use this to evaluate $d x / d y$ at the point $(1,2)$.
(d) Explain the relation between the answers in parts (b) and (c).
5. (Problem 66 from Section 14.4 of the textbook): Find the value of $\partial x / \partial z$ at the point $(1,-1,-3)$ if the equation

$$
x z+y \ln x-x^{2}+4=0
$$

defines x as a function of the two independent variables y and z.

