Math 114, Spring 2017

Practice Problems for the Final Exam

1. The planes $3 x+2 y+z=6$ and $x+y=2$ intersect in a line ℓ. Find the distance from the origin to ℓ.
(Answer: $\frac{\sqrt{24}}{3}$)
2. Find the area of the triangle with vertices $A=(0,0,1), B=(1,2,1)$ and $C=(0,0,0)$. What is the angle between the two edges $A B$ and $A C$?
(Answer: area is $\frac{\sqrt{5}}{2}$ and the angle is $\frac{\pi}{2}$)
3. A missile is launched from the top of a 15 m high cliff. The missile reaches a maximum height of 20 m and lands 60 m away from its initial position. Find the missiles initial velocity.
(Answer: Initial velocity is $\vec{v}_{0}=(20,10)$)
4. A particle has an acceleration $\vec{a}(t)=t \vec{i}+t^{2} \vec{j}+2 \vec{k}$. If its initial velocity is $\vec{v}_{0}=(1,3,7)$ and it is initially at the origin, find its position function $\vec{r}(t)$.
(Answer: $\left.\vec{r}(t)=(1,3,7) t+\left(t^{3} / 6, t^{4} / 12, t^{2}\right)\right)$
5. Find the arc length of the curve $\vec{r}(t)=\left(t^{2}, \cos t+t \sin t, \sin t-t \cos t\right)$ for $0 \leq t \leq \sqrt{2}$. (Answer: $\sqrt{5}$)
6. Consider the helix $\vec{r}(t)=(3 \cos t, 3 \sin t, 4 t)$, compute:
a) \vec{T}, \vec{N} and \vec{B} at time $t=0$;
b) The curvature κ at time $t=0$;
c) a_{T} and a_{N} where $\vec{a}=a_{T} \vec{T}+a_{N} \vec{N}$ at time $t=0$.
(Answer: $\vec{T}(0)=(0,3 / 5,4 / 5), \vec{N}(0)=(-1,0,0), \vec{B}(0)=(0,-4 / 5,3 / 5), \kappa=3 / 25$, $a_{T}=0$ and $\left.a_{N}=3\right)$
7. Consider the function

$$
f(x, y)=\left\{\begin{array}{cc}
(y+1) e^{-\left(x^{2}+y^{2}\right)} \sin \left(x^{2}+y^{2}\right) & \text { if } y \geq 0 \\
e^{-\left(x^{2}+y^{2}\right)} \sin \left(x^{2}+y^{2}\right) & \text { if } y<0 .
\end{array}\right.
$$

a) Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ if it exists.
b) Is f continuous at $(0,0)$?
(Answer: 0; yes)
8. Consider the function

$$
f(x, y)=\left\{\begin{array}{ccc}
x+y \sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

a) Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ if it exists.
b) Is f continuous at $(0,0)$?
(Answer: 0; yes)
9. Consider the function

$$
f(x, y)= \begin{cases}\frac{x y^{3}}{x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

a) Compute, if they exist, the partial derivatives f_{x} and f_{y} at $(0,0)$.
b) Is the function $f(x, y)$ continuous at $(0,0)$?
(Answer: $f_{x}(0,0)=f_{y}(0,0)=0 ;$ no)
10. Find the extrema of the function $f(x, y)=e^{-\frac{1}{3} x^{3}+x-y^{2}}$.
(Answer: saddle point at $(-1,0)$; local max at $(1,0))$
11. Use the method of Lagrange multipliers to solve the following optimization problem. Find the isosceles triangle of largest area inscribed in the circle $x^{2}+y^{2}=1$ with the vertex between the two equal sides in the point $(0,1)$.
(Answer: the equilateral triangle, i.e., the triangle with vertices in $(0,1),(\sqrt{3} / 2,-1 / 2)$, $(-\sqrt{3} / 2,-1 / 2)$)
12. Find the extrema of the function $f(x, y, z)=y-2 z$ on the curve defined by the equations

$$
2 x-z=2, \quad x^{2}+y^{2}=1 .
$$

(Answer: extrema at $(-4 / \sqrt{17}, 1 / \sqrt{17},-8 / \sqrt{17}-2)$ and $(4 / \sqrt{17},-1 / \sqrt{17}, 8 / \sqrt{17}-2))$
13. Compute the volume of the body delimited by the lower hemisphere $x^{2}+y^{2}+z^{2}=1$, $-1 \leq z \leq 0$, and the cone $z=1-\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.
(Answer: π)
14. Find the work done by the vector field $\vec{F}=\left(x^{2}, y z, y^{2}\right)$ on a particle moving along the path $\vec{r}(t)=3 t \vec{j}+4 t \vec{k}$ with $0 \leq t \leq 1$.
(Answer: $W=24$.)
15. Compute

$$
\int_{C} \sqrt{x+y} \mathrm{~d} x
$$

where C is the path that starts at $(0,0)$, then moves in a straight line to $(1,3)$, then moves in a straight line to $(0,3)$ and finally moves back to $(0,0)$ in a straight line. (Answer: $2 \sqrt{3}-4$.)
16. Use Green's Theorem to compute the following line integrals (all curves are positively oriented):
a) $\int_{\gamma}\left(y+e^{\sqrt{x}}\right) \mathrm{d} x+\left(2 x+\cos \left(y^{2}\right)\right) \mathrm{d} y$, where γ is the boundary of the region enclosed by $y=x^{2}$ and $x=y^{2}$.
(Answer: 1/3)
b) $\int_{\gamma} x y \mathrm{~d} x+2 x^{2} \mathrm{~d} y$, where γ consists of the line segment joining $(-2,0)$ to $(2,0)$ and the semicircle $x^{2}+y^{2}=4, y \geq 0$.
(Answer: 0)
c) $\int_{\gamma} 2 x y \mathrm{~d} x+x^{2} \mathrm{~d} y$, where γ is the cardioid $r(\theta)=1+\cos \theta$.
(Answer: 0)
d) $\int_{\gamma}\left(x y+e^{x^{2}}\right) \mathrm{d} x+\left(x^{2}-\ln (1+y)\right) \mathrm{d} y$, where γ is the closed curve formed by the line segment joining $(0,0)$ to $(\pi, 0)$ and $y=\sin x$.
(Answer: π)
e) $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$, where $\vec{F}(x, y)=\left(y^{2}-x^{2} y\right) \vec{i}+x y^{2} \vec{j}$ and γ consists of the line segments joining the origin to $(2,0)$ and $(\sqrt{2}, \sqrt{2})$ and the circular arc $x^{2}+y^{2}=4$ from $(2,0)$ to $(\sqrt{2}, \sqrt{2})$.
(Answer: $\pi+\frac{16}{3}\left(\frac{1}{\sqrt{2}}-1\right)$)
17. Use Green's Theorem to compute the area of $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2 / 3}+y^{2 / 3} \leq a^{2 / 3}\right\}$. (Answer: $\frac{3 \pi a^{2}}{8}$)
18. Let $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a smooth radial vector field, that is, $\vec{F}(x, y)=f(r) \vec{r}$ where $\vec{r}=x \vec{i}+y \vec{j}, r=\sqrt{x^{2}+y^{2}}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function. Show that \vec{F} is conservative.
19. Determine whether the following vector fields \vec{F} are conservative in the domain Ω. In the affirmative case, find a potential φ such that $\vec{F}=\nabla \varphi$.
a) $\vec{F}(x, y)=\left(2 x e^{y}+y, x^{2} e^{y}+x-2 y\right), \Omega=\mathbb{R}^{2}$
(Answer: \vec{F} is conservative, $\varphi(x, y)=x^{2} e^{y}+x y-y^{2}$)
b) $\vec{F}(x, y, z)=\left(2 x^{2}+8 x y^{2}, 3 x^{3} y-3 x y,-4 z^{2} y^{2}-2 x^{3} z\right), \Omega=\mathbb{R}^{3}$
(Answer: \vec{F} is not conservative)
c) $\vec{F}(x, y, z)=\left(y^{2} \cos x+z^{3},-4+2 y \sin x, 3 x z^{2}+2\right), \Omega=\mathbb{R}^{3}$
(Answer: \vec{F} is conservative, $\varphi(x, y, z)=y^{2} \sin x+x z^{3}-4 y+2 z$)
d) $\vec{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right), \Omega=\mathbb{R}^{2} \backslash\{(0,0)\}$
(Answer: \vec{F} is not conservative)
e) $\vec{F}(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right), \Omega=\mathbb{R}^{2} \backslash\{(x, 0): x \leq 0\}$
(Answer: \vec{F} is conservative, $\left.\varphi(x, y)=\arctan \left(\frac{y}{x}\right)\right)$
f) $\vec{F}(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right), \Omega=\mathbb{R}^{2} \backslash\{(0,0)\}$
(Answer: \vec{F} is conservative, $\varphi(x, y)=\ln \sqrt{x^{2}+y^{2}}$)
20. Find a parametrization and use it to compute the area of the following surfaces Σ :
a) Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cone $z \geq \sqrt{x^{2}+y^{2}}$ (Answer: $4 \pi(2-\sqrt{2})$)
b) Σ is the part of the plane $z=2 x+3 y$ that lies inside the cylinder $x^{2}+y^{2}=16$ (Answer: $16 \pi \sqrt{14}$)
c) Σ is the part of the cylinder $x^{2}+z^{2}=a^{2}$ that lies inside the cylinder $x^{2}+y^{2}=a^{2}$, where $a>0$
(Answer: $8 a^{2}$)
d) Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ that lies inside the cylinder $x^{2}+y^{2}=a x$, where $a>0$
(Answer: $2 a^{2}(\pi-2)$)
21. Compute the following surface integrals $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$
a) $\vec{F}=\left(x^{2} y,-3 x y^{2}, 4 y^{3}\right)$ and Σ is the part of the paraboloid $z=9-x^{2}-y^{2}, z \geq 0$, oriented so that the unit normal vector at $(0,0,0)$ is \vec{k}
(Answer: 0)
b) $\vec{F}=(x, x y, x z)$ and Σ is the part of the plane $3 x+2 y+z=6$ inside the cylinder $x^{2}+y^{2}=1$, oriented so that the unit normal vector is $\frac{1}{\sqrt{14}}(3,2,1)$
(Answer: $-\frac{3 \pi}{4}$)
c) $\vec{F}=(-y, x, 3 z)$ and Σ is the hemisphere $z=\sqrt{16-x^{2}-y^{2}}$, oriented so that the unit normal at the point $(0,0,4)$ is \vec{k}
(Answer: 128π)
d) $\vec{F}=(-y z, 0,0)$ and Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ outside the cylinder $x^{2}+y^{2} \leq 1$, oriented so that the unit normal at the point $(2,0,0)$ is \vec{i}
(Answer: 0)
e) $\vec{F}=(x, y,-2 z)$ and Σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ bounded by the cylinder $x^{2}+y^{2}=2 x$, oriented so that its unit normal satisfies $\vec{n} \cdot \vec{k}<0$
(Answer: $\frac{32}{3}$)
22. Use Stokes' Theorem to compute $\int_{\gamma} \vec{F} \mathrm{~d} \gamma$ in the following cases, where γ is always oriented so that its projection on the $x y$-plane is oriented counterclockwise.
a) $\vec{F}(x, y, z)=(x z, 2 x y, 3 x y)$ and γ is the boundary of the part of the plane $3 x+y+$ $z=3$ contained in the first octant
(Answer: $\frac{7}{2}$)
b) $\vec{F}(x, y, z)=\left(z^{2}+e^{x^{2}}, y^{2}+\ln \left(1+y^{2}\right), x y+\sin \left(z^{3}\right)\right)$ and γ is the boundary of the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,2)$
(Answer: $\frac{4}{3}$)
c) $\vec{F}(x, y, z)=\left(x+\cos \left(x^{3}\right), y, x^{2}+y^{2}+z^{100}\right)$ and γ is the boundary of the paraboloid $z=1-x^{2}-y^{2}$ contained in the first octant
(Answer: 0)
d) $\vec{F}(x, y, z)=\left(y+z, 2 x+\left(1+y^{2}\right)^{20}, x+y+z\right)$ and γ is the intersection of the cylinder $x^{2}+y^{2}=2 y$ with the plane $z=y$
(Answer: π)
23. Use Gauss' Theorem to compute the following surface integrals $\iint_{\Sigma} \vec{F} \mathrm{~d} \Sigma$ in the following cases, where Σ is always oriented with outward pointing normal vector.
a) $\vec{F}(x, y, z)=\left(x^{2} z^{3}, 2 x y z^{3}, x z^{4}\right)$ and Σ is the boundary surface of the parallelepiped with vertices $(\pm 1, \pm 2, \pm 3)$
(Answer: 0)
b) $\vec{F}(x, y, z)=\left(y z \sin ^{3}(x), y^{2} z \sin ^{2}(x) \cos (x), 2 y z^{2} \sin ^{2}(x) \cos (x)\right)$ and Σ is the boundary surface of the parallelepiped with vertices $(\pm \pi, \pm 1, \pm 1)$
(Answer: 0)
c) $\vec{F}(x, y, z)=(x, y, z)$ and Σ is the sphere $x^{2}+y^{2}+z^{2}=4$
(Answer: 32π)
d) $\vec{F}(x, y, z)=(-y, x, z)$ and Σ is the sphere $x^{2}+y^{2}+z^{2}=1$
(Answer: $\frac{4 \pi}{3}$)

