Practice Problems for the Final Exam

- 1. The planes 3x + 2y + z = 6 and x + y = 2 intersect in a line ℓ . Find the distance from the origin to ℓ . (Answer: $\frac{\sqrt{24}}{3}$)
- 2. Find the area of the triangle with vertices A = (0, 0, 1), B = (1, 2, 1) and C = (0, 0, 0). What is the angle between the two edges AB and AC? (Answer: area is $\frac{\sqrt{5}}{2}$ and the angle is $\frac{\pi}{2}$)
- A missile is launched from the top of a 15m high cliff. The missile reaches a maximum height of 20m and lands 60m away from its initial position. Find the missiles initial velocity.

(Answer: Initial velocity is $\vec{v}_0 = (20, 10)$)

- 4. A particle has an acceleration $\vec{a}(t) = t\vec{i} + t^2\vec{j} + 2\vec{k}$. If its initial velocity is $\vec{v}_0 = (1, 3, 7)$ and it is initially at the origin, find its position function $\vec{r}(t)$. (Answer: $\vec{r}(t) = (1, 3, 7)t + (t^3/6, t^4/12, t^2)$)
- 5. Find the arc length of the curve $\vec{r}(t) = (t^2, \cos t + t \sin t, \sin t t \cos t)$ for $0 \le t \le \sqrt{2}$. (Answer: $\sqrt{5}$)
- 6. Consider the helix $\vec{r}(t) = (3\cos t, 3\sin t, 4t)$, compute:
 - a) \vec{T}, \vec{N} and \vec{B} at time t = 0;
 - b) The curvature κ at time t = 0;
 - c) a_T and a_N where $\vec{a} = a_T \vec{T} + a_N \vec{N}$ at time t = 0.

(Answer: $\vec{T}(0) = (0, 3/5, 4/5), \ \vec{N}(0) = (-1, 0, 0), \ \vec{B}(0) = (0, -4/5, 3/5), \ \kappa = 3/25, \ a_T = 0 \ \text{and} \ a_N = 3$)

7. Consider the function

$$f(x,y) = \begin{cases} (y+1)e^{-(x^2+y^2)}\sin(x^2+y^2) & \text{if } y \ge 0, \\ e^{-(x^2+y^2)}\sin(x^2+y^2) & \text{if } y < 0. \end{cases}$$

- a) Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ if it exists.
- b) Is f continuous at (0,0)? (Answer: 0; yes)

8. Consider the function

$$f(x,y) = \begin{cases} x + y \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- a) Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ if it exists.
- b) Is f continuous at (0,0)? (Answer: 0; yes)
- 9. Consider the function

$$f(x,y) = \begin{cases} \frac{xy^3}{x^4 + y^4} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- a) Compute, if they exist, the partial derivatives f_x and f_y at (0,0).
- b) Is the function f(x, y) continuous at (0, 0)? (Answer: $f_x(0, 0) = f_y(0, 0) = 0$; no)
- 10. Find the extrema of the function $f(x, y) = e^{-\frac{1}{3}x^3 + x y^2}$. (Answer: saddle point at (-1, 0); local max at (1, 0))

11. Use the method of Lagrange multipliers to solve the following optimization problem. Find the isosceles triangle of largest area inscribed in the circle $x^2 + y^2 = 1$ with the vertex between the two equal sides in the point (0, 1). (Answer: the equilateral triangle, i.e., the triangle with vertices in (0, 1), $(\sqrt{3}/2, -1/2)$, $(-\sqrt{3}/2, -1/2)$)

12. Find the extrema of the function f(x, y, z) = y - 2z on the curve defined by the equations

2x - z = 2, $x^2 + y^2 = 1.$

(Answer: extrema at $(-4/\sqrt{17}, 1/\sqrt{17}, -8/\sqrt{17}-2)$ and $(4/\sqrt{17}, -1/\sqrt{17}, 8/\sqrt{17}-2)$)

- 13. Compute the volume of the body delimited by the lower hemisphere $x^2 + y^2 + z^2 = 1$, $-1 \le z \le 0$, and the cone $z = 1 - \sqrt{x^2 + y^2}$, $0 \le z \le 1$. (Answer: π)
- 14. Find the work done by the vector field $\vec{F} = (x^2, yz, y^2)$ on a particle moving along the path $\vec{r}(t) = 3t\vec{j} + 4t\vec{k}$ with $0 \le t \le 1$. (Answer: W = 24.)

15. Compute

$$\int_C \sqrt{x+y} \, \mathrm{d}x$$

where C is the path that starts at (0,0), then moves in a straight line to (1,3), then moves in a straight line to (0,3) and finally moves back to (0,0) in a straight line. (Answer: $2\sqrt{3} - 4$.)

- 16. Use Green's Theorem to compute the following line integrals (all curves are positively oriented):
 - a) $\int_{\gamma} (y + e^{\sqrt{x}}) dx + (2x + \cos(y^2)) dy$, where γ is the boundary of the region enclosed by $y = x^2$ and $x = y^2$. (Answer: 1/3)
 - b) $\int_{\gamma} xy \, dx + 2x^2 \, dy$, where γ consists of the line segment joining (-2, 0) to (2, 0) and the semicircle $x^2 + y^2 = 4$, $y \ge 0$. (Answer: 0)
 - c) $\int_{\gamma} 2xy \, dx + x^2 \, dy$, where γ is the cardioid $r(\theta) = 1 + \cos \theta$. (Answer: 0)
 - d) $\int_{\gamma} (xy + e^{x^2}) dx + (x^2 \ln(1+y)) dy$, where γ is the closed curve formed by the line segment joining (0,0) to $(\pi,0)$ and $y = \sin x$. (Answer: π)
 - e) $\int_{\gamma} \vec{F} d\gamma$, where $\vec{F}(x,y) = (y^2 x^2 y)\vec{i} + xy^2 \vec{j}$ and γ consists of the line segments joining the origin to (2,0) and $(\sqrt{2},\sqrt{2})$ and the circular arc $x^2 + y^2 = 4$ from (2,0) to $(\sqrt{2},\sqrt{2})$. (Answer: $\pi + \frac{16}{3}(\frac{1}{\sqrt{2}} - 1)$)
- 17. Use Green's Theorem to compute the area of $\Omega = \{(x, y) \in \mathbb{R}^2 : x^{2/3} + y^{2/3} \le a^{2/3}\}.$ (Answer: $\frac{3\pi a^2}{8}$)
- 18. Let $\vec{F} \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a smooth radial vector field, that is, $\vec{F}(x,y) = f(r)\vec{r}$ where $\vec{r} = x\vec{i} + y\vec{j}$, $r = \sqrt{x^2 + y^2}$, and $f \colon \mathbb{R} \to \mathbb{R}$ is a smooth function. Show that \vec{F} is conservative.

- 19. Determine whether the following vector fields \vec{F} are conservative in the domain Ω . In the affirmative case, find a potential φ such that $\vec{F} = \nabla \varphi$.
 - a) $\vec{F}(x,y) = (2xe^y + y, x^2e^y + x 2y), \ \Omega = \mathbb{R}^2$ (Answer: \vec{F} is conservative, $\varphi(x,y) = x^2e^y + xy - y^2$)
 - b) $\vec{F}(x,y,z) = (2x^2 + 8xy^2, 3x^3y 3xy, -4z^2y^2 2x^3z), \Omega = \mathbb{R}^3$ (Answer: \vec{F} is not conservative)
 - c) $\vec{F}(x, y, z) = (y^2 \cos x + z^3, -4 + 2y \sin x, 3xz^2 + 2), \Omega = \mathbb{R}^3$ (Answer: \vec{F} is conservative, $\varphi(x, y, z) = y^2 \sin x + xz^3 - 4y + 2z$)
 - d) $\vec{F}(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right), \Omega = \mathbb{R}^2 \setminus \{(0,0)\}$ (Answer: \vec{F} is not conservative)
 - e) $\vec{F}(x,y) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right), \ \Omega = \mathbb{R}^2 \setminus \{(x,0) : x \le 0\}$ (Answer: \vec{F} is conservative, $\varphi(x,y) = \arctan(\frac{y}{x})$)
 - f) $\vec{F}(x,y) = \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}\right), \Omega = \mathbb{R}^2 \setminus \{(0,0)\}$ (Answer: \vec{F} is conservative, $\varphi(x,y) = \ln \sqrt{x^2 + y^2}$)
- 20. Find a parametrization and use it to compute the area of the following surfaces Σ :
 - a) Σ is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cone $z \ge \sqrt{x^2 + y^2}$ (Answer: $4\pi(2-\sqrt{2})$)
 - b) Σ is the part of the plane z = 2x + 3y that lies inside the cylinder $x^2 + y^2 = 16$ (Answer: $16\pi\sqrt{14}$)
 - c) Σ is the part of the cylinder $x^2 + z^2 = a^2$ that lies inside the cylinder $x^2 + y^2 = a^2$, where a > 0(Answer: $8a^2$)
 - d) Σ is the part of the sphere $x^2+y^2+z^2=a^2$ that lies inside the cylinder $x^2+y^2=ax$, where a>0(Answer: $2a^2(\pi-2)$)
- 21. Compute the following surface integrals $\iint_{\Sigma} \vec{F} d\Sigma$
 - a) $\vec{F} = (x^2y, -3xy^2, 4y^3)$ and Σ is the part of the paraboloid $z = 9 x^2 y^2$, $z \ge 0$, oriented so that the unit normal vector at (0, 0, 0) is \vec{k} (Answer: 0)
 - b) $\vec{F} = (x, xy, xz)$ and Σ is the part of the plane 3x + 2y + z = 6 inside the cylinder $x^2 + y^2 = 1$, oriented so that the unit normal vector is $\frac{1}{\sqrt{14}}(3, 2, 1)$ (Answer: $-\frac{3\pi}{4}$)

- c) $\vec{F} = (-y, x, 3z)$ and Σ is the hemisphere $z = \sqrt{16 x^2 y^2}$, oriented so that the unit normal at the point (0, 0, 4) is \vec{k} (Answer: 128π)
- d) $\vec{F} = (-yz, 0, 0)$ and Σ is the part of the sphere $x^2 + y^2 + z^2 = 4$ outside the cylinder $x^2 + y^2 \le 1$, oriented so that the unit normal at the point (2, 0, 0) is \vec{i} (Answer: 0)
- e) $\vec{F} = (x, y, -2z)$ and Σ is the part of the cone $z = \sqrt{x^2 + y^2}$ bounded by the cylinder $x^2 + y^2 = 2x$, oriented so that its unit normal satisfies $\vec{n} \cdot \vec{k} < 0$ (Answer: $\frac{32}{3}$)
- 22. Use Stokes' Theorem to compute $\int_{\gamma} \vec{F} \, d\gamma$ in the following cases, where γ is always oriented so that its projection on the *xy*-plane is oriented counterclockwise.
 - a) F(x, y, z) = (xz, 2xy, 3xy) and γ is the boundary of the part of the plane 3x + y + z = 3 contained in the first octant (Answer: $\frac{7}{2}$)
 - b) $\vec{F}(x, y, z) = (z^2 + e^{x^2}, y^2 + \ln(1 + y^2), xy + \sin(z^3))$ and γ is the boundary of the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 2)(Answer: $\frac{4}{3}$)
 - c) $\vec{F}(x, y, z) = (x + \cos(x^3), y, x^2 + y^2 + z^{100})$ and γ is the boundary of the paraboloid $z = 1 x^2 y^2$ contained in the first octant (Answer: 0)
 - d) $\vec{F}(x, y, z) = (y+z, 2x+(1+y^2)^{20}, x+y+z)$ and γ is the intersection of the cylinder $x^2 + y^2 = 2y$ with the plane z = y (Answer: π)
- 23. Use Gauss' Theorem to compute the following surface integrals $\iint_{\Sigma} \vec{F} \, d\Sigma$ in the following cases, where Σ is always oriented with outward pointing normal vector.
 - a) $\vec{F}(x, y, z) = (x^2 z^3, 2xyz^3, xz^4)$ and Σ is the boundary surface of the parallelepiped with vertices $(\pm 1, \pm 2, \pm 3)$ (Answer: 0)
 - b) $\vec{F}(x, y, z) = (yz \sin^3(x), y^2 z \sin^2(x) \cos(x), 2yz^2 \sin^2(x) \cos(x))$ and Σ is the boundary surface of the parallelepiped with vertices $(\pm \pi, \pm 1, \pm 1)$ (Answer: 0)
 - c) $\vec{F}(x, y, z) = (x, y, z)$ and Σ is the sphere $x^2 + y^2 + z^2 = 4$ (Answer: 32π)
 - d) $\vec{F}(x,y,z) = (-y,x,z)$ and Σ is the sphere $x^2 + y^2 + z^2 = 1$ (Answer: $\frac{4\pi}{3}$)